Learning Outcomes
- Apply the formulas for derivatives and integrals of the hyperbolic functions
- Apply the formulas for the derivatives of the inverse hyperbolic functions and their associated integrals
Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as
The other hyperbolic functions are then defined in terms of [latex]\text{sinh}x[/latex] and [latex]\text{cosh}x.[/latex] The graphs of the hyperbolic functions are shown in the following figure.
It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at [latex]\text{sinh}x[/latex] we have
Similarly, [latex](\frac{d}{dx})\text{cosh}x=\text{sinh}x.[/latex] We summarize the differentiation formulas for the hyperbolic functions in the following table.
[latex]f(x)[/latex] | [latex]\frac{d}{dx}f(x)[/latex] |
---|---|
[latex]\text{sinh}x[/latex] | [latex]\text{cosh}x[/latex] |
[latex]\text{cosh}x[/latex] | [latex]\text{sinh}x[/latex] |
[latex]\text{tanh}x[/latex] | [latex]{\text{sech}}^{2}x[/latex] |
[latex]\text{coth}x[/latex] | [latex]\text{−}{\text{csch}}^{2}x[/latex] |
[latex]\text{sech}x[/latex] | [latex]\text{−}\text{sech}x\text{tanh}x[/latex] |
[latex]\text{csch}x[/latex] | [latex]\text{−}\text{csch}x\text{coth}x[/latex] |
Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine functions match: [latex](\frac{d}{dx}) \sin x= \cos x[/latex] and [latex](\frac{d}{dx})\text{sinh}x=\text{cosh}x.[/latex] The derivatives of the cosine functions, however, differ in sign: [latex](\frac{d}{dx}) \cos x=\text{−} \sin x,[/latex] but [latex](\frac{d}{dx})\text{cosh}x=\text{sinh}x.[/latex] As we continue our examination of the hyperbolic functions, we must be mindful of their similarities and differences to the standard trigonometric functions.
These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.
Example: Differentiating Hyperbolic Functions
Evaluate the following derivatives:
- [latex]\frac{d}{dx}(\text{sinh}({x}^{2}))[/latex]
- [latex]\frac{d}{dx}{(\text{cosh}x)}^{2}[/latex]
Try It
Evaluate the following derivatives:
- [latex]\frac{d}{dx}(\text{tanh}({x}^{2}+3x))[/latex]
- [latex]\frac{d}{dx}(\dfrac{1}{{(\text{sinh}x)}^{2}})[/latex]
Watch the following video to see the worked solution to Example: Differentiating Hyperbolic Functions and the above Try It.
example: Integrals Involving Hyperbolic Functions
Evaluate the following integrals:
- [latex]\displaystyle\int x\text{cosh}({x}^{2})dx[/latex]
- [latex]\displaystyle\int \text{tanh}xdx[/latex]
Try It
Evaluate the following integrals:
- [latex]\displaystyle\int {\text{sinh}}^{3}x\text{cosh}xdx[/latex]
- [latex]\displaystyle\int {\text{sech}}^{2}(3x)dx[/latex]
Watch the following video to see the worked solution to the above Try It.
Try It
Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses. Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of the inverse hyperbolic functions are summarized in the following table.
Function | Domain | Range |
---|---|---|
[latex]{\text{sinh}}^{-1}x[/latex] | [latex](\text{−}\infty ,\infty )[/latex] | [latex](\text{−}\infty ,\infty )[/latex] |
[latex]{\text{cosh}}^{-1}x[/latex] | [latex](1,\infty )[/latex] | [latex][0,\infty )[/latex] |
[latex]{\text{tanh}}^{-1}x[/latex] | [latex](-1,1)[/latex] | [latex](\text{−}\infty ,\infty )[/latex] |
[latex]{\text{coth}}^{-1}x[/latex] | [latex](\text{−}\infty ,-1)\cup (1,\infty )[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] |
[latex]{\text{sech}}^{-1}x[/latex] | [latex](0\text{, 1})[/latex] | [latex][0,\infty )[/latex] |
[latex]{\text{csch}}^{-1}x[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] | [latex](\text{−}\infty ,0)\cup (0,\infty )[/latex] |
The graphs of the inverse hyperbolic functions are shown in the following figure.
To find the derivatives of the inverse functions, we use implicit differentiation. We have
Recall that [latex]{\text{cosh}}^{2}y-{\text{sinh}}^{2}y=1,[/latex] so [latex]\text{cosh}y=\sqrt{1+{\text{sinh}}^{2}y}.[/latex] Then,
We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation formulas are summarized in the following table.
[latex]f(x)[/latex] | [latex]\frac{d}{dx}f(x)[/latex] |
---|---|
[latex]{\text{sinh}}^{-1}x[/latex] | [latex]\frac{1}{\sqrt{1+{x}^{2}}}[/latex] |
[latex]{\text{cosh}}^{-1}x[/latex] | [latex]\frac{1}{\sqrt{{x}^{2}-1}}[/latex] |
[latex]{\text{tanh}}^{-1}x[/latex] | [latex]\frac{1}{1-{x}^{2}}[/latex] |
[latex]{\text{coth}}^{-1}x[/latex] | [latex]\frac{1}{1-{x}^{2}}[/latex] |
[latex]{\text{sech}}^{-1}x[/latex] | [latex]\frac{-1}{x\sqrt{1-{x}^{2}}}[/latex] |
[latex]{\text{csch}}^{-1}x[/latex] | [latex]\frac{-1}{|x|\sqrt{1+{x}^{2}}}[/latex] |
Note that the derivatives of [latex]{\text{tanh}}^{-1}x[/latex] and [latex]{\text{coth}}^{-1}x[/latex] are the same. Thus, when we integrate [latex]1\text{/}(1-{x}^{2}),[/latex] we need to select the proper antiderivative based on the domain of the functions and the values of [latex]x.[/latex] Integration formulas involving the inverse hyperbolic functions are summarized as follows.
Example: Differentiating Inverse Hyperbolic Functions
Evaluate the following derivatives:
- [latex]\frac{d}{dx}({\text{sinh}}^{-1}(\frac{x}{3}))[/latex]
- [latex]\frac{d}{dx}{({\text{tanh}}^{-1}x)}^{2}[/latex]
Try It
Evaluate the following derivatives:
- [latex]\frac{d}{dx}({\text{cosh}}^{-1}(3x))[/latex]
- [latex]\frac{d}{dx}{({\text{coth}}^{-1}x)}^{3}[/latex]
Watch the following video to see the worked solution to the above Try It.
Example: Integrals Involving Inverse Hyperbolic Functions
Evaluate the following integrals:
- [latex]\displaystyle\int \frac{1}{\sqrt{4{x}^{2}-1}}dx[/latex]
- [latex]\displaystyle\int \frac{1}{2x\sqrt{1-9{x}^{2}}}dx[/latex]
Try It
Evaluate the following integrals:
- [latex]\displaystyle\int \frac{1}{\sqrt{{x}^{2}-4}}dx,\text{}x>2[/latex]
- [latex]\displaystyle\int \frac{1}{\sqrt{1-{e}^{2x}}}dx[/latex]
Watch the following video to see the worked solution to the above Try It.
Try It
Candela Citations
- 2.9 Calculus of Hyperbolic Functions. Authored by: Ryan Melton. License: CC BY: Attribution
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction