Problem Set: Working with Taylor Series

In the following exercises, use appropriate substitutions to write down the Maclaurin series for the given binomial.

1. [latex]{\left(1-x\right)}^{\frac{1}{3}}[/latex]

2. [latex]{\left(1+{x}^{2}\right)}^{\frac{-1}{3}}[/latex]

3. [latex]{\left(1-x\right)}^{1.01}[/latex]

4. [latex]{\left(1 - 2x\right)}^{\frac{2}{3}}[/latex]

In the following exercises, use the substitution [latex]{\left(b+x\right)}^{r}={\left(b+a\right)}^{r}{\left(1+\frac{x-a}{b+a}\right)}^{r}[/latex] in the binomial expansion to find the Taylor series of each function with the given center.

5. [latex]\sqrt{x+2}[/latex] at [latex]a=0[/latex]

6. [latex]\sqrt{{x}^{2}+2}[/latex] at [latex]a=0[/latex]

7. [latex]\sqrt{x+2}[/latex] at [latex]a=1[/latex]

8. [latex]\sqrt{2x-{x}^{2}}[/latex] at [latex]a=1[/latex] (Hint: [latex]2x-{x}^{2}=1-{\left(x - 1\right)}^{2}[/latex])

9. [latex]{\left(x - 8\right)}^{\frac{1}{3}}[/latex] at [latex]a=9[/latex]

10. [latex]\sqrt{x}[/latex] at [latex]a=4[/latex]

11. [latex]{x}^{\frac{1}{3}}[/latex] at [latex]a=27[/latex]

12. [latex]\sqrt{x}[/latex] at [latex]x=9[/latex]

In the following exercises, use the binomial theorem to estimate each number, computing enough terms to obtain an estimate accurate to an error of at most [latex]\frac{1}{1000}[/latex].

13. [T] [latex]{\left(15\right)}^{\frac{1}{4}}[/latex] using [latex]{\left(16-x\right)}^{\frac{1}{4}}[/latex]

14. [T] [latex]{\left(1001\right)}^{\frac{1}{3}}[/latex] using [latex]{\left(1000+x\right)}^{\frac{1}{3}}[/latex]

In the following exercises, use the binomial approximation [latex]\sqrt{1-x}\approx 1-\frac{x}{2}-\frac{{x}^{2}}{8}-\frac{{x}^{3}}{16}-\frac{5{x}^{4}}{128}-\frac{7{x}^{5}}{256}[/latex] for [latex]|x|<1[/latex] to approximate each number. Compare this value to the value given by a scientific calculator.

15. [T] [latex]\frac{1}{\sqrt{2}}[/latex] using [latex]x=\frac{1}{2}[/latex] in [latex]{\left(1-x\right)}^{\frac{1}{2}}[/latex]

16. [T] [latex]\sqrt{5}=5\times \frac{1}{\sqrt{5}}[/latex] using [latex]x=\frac{4}{5}[/latex] in [latex]{\left(1-x\right)}^{\frac{1}{2}}[/latex]

17. [T] [latex]\sqrt{3}=\frac{3}{\sqrt{3}}[/latex] using [latex]x=\frac{2}{3}[/latex] in [latex]{\left(1-x\right)}^{\frac{1}{2}}[/latex]

18. [T] [latex]\sqrt{6}[/latex] using [latex]x=\frac{5}{6}[/latex] in [latex]{\left(1-x\right)}^{\frac{1}{2}}[/latex]

19. Integrate the binomial approximation of [latex]\sqrt{1-x}[/latex] to find an approximation of [latex]{\displaystyle\int }_{0}^{x}\sqrt{1-t}dt[/latex].

20. [T] Recall that the graph of [latex]\sqrt{1-{x}^{2}}[/latex] is an upper semicircle of radius [latex]1[/latex]. Integrate the binomial approximation of [latex]\sqrt{1-{x}^{2}}[/latex] up to order [latex]8[/latex] from [latex]x=-1[/latex] to [latex]x=1[/latex] to estimate [latex]\frac{\pi }{2}[/latex].

In the following exercises, use the expansion [latex]{\left(1+x\right)}^{\frac{1}{3}}=1+\frac{1}{3}x-\frac{1}{9}{x}^{2}+\frac{5}{81}{x}^{3}-\frac{10}{243}{x}^{4}+\cdots[/latex] to write the first five terms (not necessarily a quartic polynomial) of each expression.

21. [latex]{\left(1+4x\right)}^{\frac{1}{3}};a=0[/latex]

22. [latex]{\left(1+4x\right)}^{\frac{4}{3}};a=0[/latex]

23. [latex]{\left(3+2x\right)}^{\frac{1}{3}};a=-1[/latex]

24. [latex]{\left({x}^{2}+6x+10\right)}^{\frac{1}{3}};a=-3[/latex]

25. Use [latex]{\left(1+x\right)}^{\frac{1}{3}}=1+\frac{1}{3}x-\frac{1}{9}{x}^{2}+\frac{5}{81}{x}^{3}-\frac{10}{243}{x}^{4}+\cdots[/latex] with [latex]x=1[/latex] to approximate [latex]{2}^{\frac{1}{3}}[/latex].

26. Use the approximation [latex]{\left(1-x\right)}^{\frac{2}{3}}=1-\frac{2x}{3}-\frac{{x}^{2}}{9}-\frac{4{x}^{3}}{81}-\frac{7{x}^{4}}{243}-\frac{14{x}^{5}}{729}+\cdots[/latex] for [latex]|x|<1[/latex] to approximate [latex]{2}^{\frac{1}{3}}={2.2}^{\frac{-2}{3}}[/latex].

27. Find the [latex]25\text{th}[/latex] derivative of [latex]f\left(x\right)={\left(1+{x}^{2}\right)}^{13}[/latex] at [latex]x=0[/latex].

28. Find the [latex]99[/latex] th derivative of [latex]f\left(x\right)={\left(1+{x}^{4}\right)}^{25}[/latex].

In the following exercises, find the Maclaurin series of each function.

29. [latex]f\left(x\right)=x{e}^{2x}[/latex]

30. [latex]f\left(x\right)={2}^{x}[/latex]

31. [latex]f\left(x\right)=\frac{\sin{x}}{x}[/latex]

32. [latex]f\left(x\right)=\frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}},\left(x>0\right)[/latex],

33. [latex]f\left(x\right)=\sin\left({x}^{2}\right)[/latex]

34. [latex]f\left(x\right)={e}^{{x}^{3}}[/latex]

35. [latex]f\left(x\right)={\cos}^{2}x[/latex] using the identity [latex]{\cos}^{2}x=\frac{1}{2}+\frac{1}{2}\cos\left(2x\right)[/latex]

36. [latex]f\left(x\right)={\sin}^{2}x[/latex] using the identity [latex]{\sin}^{2}x=\frac{1}{2}-\frac{1}{2}\cos\left(2x\right)[/latex]

In the following exercises, find the Maclaurin series of [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}f\left(t\right)dt[/latex] by integrating the Maclaurin series of [latex]f[/latex] term by term. If [latex]f[/latex] is not strictly defined at zero, you may substitute the value of the Maclaurin series at zero.

37. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}{e}^{\text{-}{t}^{2}}dt;f\left(t\right)={e}^{\text{-}{t}^{2}}=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{t}^{2n}}{n\text{!}}[/latex]

38. [latex]F\left(x\right)={\tan}^{-1}x;f\left(t\right)=\frac{1}{1+{t}^{2}}=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{t}^{2n}[/latex]

39. [latex]F\left(x\right)={\text{tanh}}^{-1}x;f\left(t\right)=\frac{1}{1-{t}^{2}}=\displaystyle\sum _{n=0}^{\infty }{t}^{2n}[/latex]

40. [latex]F\left(x\right)={\sin}^{-1}x;f\left(t\right)=\frac{1}{\sqrt{1-{t}^{2}}}=\displaystyle\sum _{k=0}^{\infty }\left(\begin{array}{c}\frac{1}{2}\hfill \\ k\hfill \end{array}\right)\frac{{t}^{2k}}{k\text{!}}[/latex]

41. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}\frac{\sin{t}}{t}dt;f\left(t\right)=\frac{\sin{t}}{t}=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{t}^{2n}}{\left(2n+1\right)\text{!}}[/latex]

42. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}\cos\left(\sqrt{t}\right)dt;f\left(t\right)=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{n}}{\left(2n\right)\text{!}}[/latex]

43. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}\frac{1-\cos{t}}{{t}^{2}}dt;f\left(t\right)=\frac{1-\cos{t}}{{t}^{2}}=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{t}^{2n}}{\left(2n+2\right)\text{!}}[/latex]

44. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}\frac{\text{ln}\left(1+t\right)}{t}dt;f\left(t\right)=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{t}^{n}}{n+1}[/latex]

In the following exercises, compute at least the first three nonzero terms (not necessarily a quadratic polynomial) of the Maclaurin series of [latex]f[/latex].

45. [latex]f\left(x\right)=\sin\left(x+\frac{\pi }{4}\right)=\sin{x}\cos\left(\frac{\pi }{4}\right)+\cos{x}\sin\left(\frac{\pi }{4}\right)[/latex]

46. [latex]f\left(x\right)=\tan{x}[/latex]

47. [latex]f\left(x\right)=\text{ln}\left(\cos{x}\right)[/latex]

48. [latex]f\left(x\right)={e}^{x}\cos{x}[/latex]

49. [latex]f\left(x\right)={e}^{\sin{x}}[/latex]

50. [latex]f\left(x\right)={\sec}^{2}x[/latex]

51. [latex]f\left(x\right)=\text{tanh}x[/latex]

52. [latex]f\left(x\right)=\frac{\tan\sqrt{x}}{\sqrt{x}}[/latex] (see expansion for [latex]\tan{x}[/latex])

In the following exercises, find the radius of convergence of the Maclaurin series of each function.

53. [latex]\text{ln}\left(1+x\right)[/latex]

54. [latex]\frac{1}{1+{x}^{2}}[/latex]

55. [latex]{\tan}^{-1}x[/latex]

56. [latex]\text{ln}\left(1+{x}^{2}\right)[/latex]

57. Find the Maclaurin series of [latex]\text{sinh}x=\frac{{e}^{x}-{e}^{\text{-}x}}{2}[/latex].

58. Find the Maclaurin series of [latex]\text{cosh}x=\frac{{e}^{x}+{e}^{\text{-}x}}{2}[/latex].

59. Differentiate term by term the Maclaurin series of [latex]\text{sinh}x[/latex] and compare the result with the Maclaurin series of [latex]\text{cosh}x[/latex].

60. [T] Let [latex]{S}_{n}\left(x\right)=\displaystyle\sum _{k=0}^{n}{\left(-1\right)}^{k}\frac{{x}^{2k+1}}{\left(2k+1\right)\text{!}}[/latex] and [latex]{C}_{n}\left(x\right)=\displaystyle\sum _{n=0}^{n}{\left(-1\right)}^{k}\frac{{x}^{2k}}{\left(2k\right)\text{!}}[/latex] denote the respective Maclaurin polynomials of degree [latex]2n+1[/latex] of [latex]\sin{x}[/latex] and degree [latex]2n[/latex] of [latex]\cos{x}[/latex]. Plot the errors [latex]\frac{{S}_{n}\left(x\right)}{{C}_{n}\left(x\right)}-\tan{x}[/latex] for [latex]n=1,..,5[/latex] and compare them to [latex]x+\frac{{x}^{3}}{3}+\frac{2{x}^{5}}{15}+\frac{17{x}^{7}}{315}-\tan{x}[/latex] on [latex]\left(-\frac{\pi }{4},\frac{\pi }{4}\right)[/latex].

61. Use the identity [latex]2\sin{x}\cos{x}=\sin\left(2x\right)[/latex] to find the power series expansion of [latex]{\sin}^{2}x[/latex] at [latex]x=0[/latex]. (Hint: Integrate the Maclaurin series of [latex]\sin\left(2x\right)[/latex] term by term.)

62. If [latex]y=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex], find the power series expansions of [latex]x{y}^{\prime }[/latex] and [latex]{x}^{2}y\text{''}[/latex].

63. [T] Suppose that [latex]y=\displaystyle\sum _{k=0}^{\infty }{a}_{k}{x}^{k}[/latex] satisfies [latex]{y}^{\prime }=-2xy[/latex] and [latex]y\left(0\right)=0[/latex]. Show that [latex]{a}_{2k+1}=0[/latex] for all [latex]k[/latex] and that [latex]{a}_{2k+2}=\frac{\text{-}{a}_{2k}}{k+1}[/latex]. Plot the partial sum [latex]{S}_{20}[/latex] of [latex]y[/latex] on the interval [latex]\left[-4,4\right][/latex].

64. [T] Suppose that a set of standardized test scores is normally distributed with mean [latex]\mu =100[/latex] and standard deviation [latex]\sigma =10[/latex]. Set up an integral that represents the probability that a test score will be between [latex]90[/latex] and [latex]110[/latex] and use the integral of the degree [latex]10[/latex] Maclaurin polynomial of [latex]\frac{1}{\sqrt{2\pi }}{e}^{\frac{\text{-}{x}^{2}}{2}}[/latex] to estimate this probability.

65. [T] Suppose that a set of standardized test scores is normally distributed with mean [latex]\mu =100[/latex] and standard deviation [latex]\sigma =10[/latex]. Set up an integral that represents the probability that a test score will be between [latex]70[/latex] and [latex]130[/latex] and use the integral of the degree [latex]50[/latex] Maclaurin polynomial of [latex]\frac{1}{\sqrt{2\pi }}{e}^{\frac{\text{-}{x}^{2}}{2}}[/latex] to estimate this probability.

66. [T] Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges to a function [latex]f\left(x\right)[/latex] such that [latex]f\left(0\right)=1,{f}^{\prime }\left(0\right)=0[/latex], and [latex]f\text{''}\left(x\right)=\text{-}f\left(x\right)[/latex]. Find a formula for [latex]{a}_{n}[/latex] and plot the partial sum [latex]{S}_{N}[/latex] for [latex]N=20[/latex] on [latex]\left[-5,5\right][/latex].

67. [T] Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges to a function [latex]f\left(x\right)[/latex] such that [latex]f\left(0\right)=0,{f}^{\prime }\left(0\right)=1[/latex], and [latex]f\text{''}\left(x\right)=\text{-}f\left(x\right)[/latex]. Find a formula for [latex]{a}_{n}[/latex] and plot the partial sum [latex]{S}_{N}[/latex] for [latex]N=10[/latex] on [latex]\left[-5,5\right][/latex].

68. Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges to a function [latex]y[/latex] such that [latex]y\text{''}-{y}^{\prime }+y=0[/latex] where [latex]y\left(0\right)=1[/latex] and [latex]y^{\prime} \left(0\right)=0[/latex]. Find a formula that relates [latex]{a}_{n+2},{a}_{n+1}[/latex], and [latex]{a}_{n}[/latex] and compute [latex]{a}_{0},...,{a}_{5}[/latex].

69. Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges to a function [latex]y[/latex] such that [latex]y\text{''}-{y}^{\prime }+y=0[/latex] where [latex]y\left(0\right)=0[/latex] and [latex]{y}^{\prime }\left(0\right)=1[/latex]. Find a formula that relates [latex]{a}_{n+2},{a}_{n+1}[/latex], and [latex]{a}_{n}[/latex] and compute [latex]{a}_{1},...,{a}_{5}[/latex].

The error in approximating the integral [latex]{\displaystyle\int }_{a}^{b}f\left(t\right)dt[/latex] by that of a Taylor approximation [latex]{\displaystyle\int }_{a}^{b}{P}_{n}\left(t\right)dt[/latex] is at most [latex]{\displaystyle\int }_{a}^{b}{R}_{n}\left(t\right)dt[/latex]. In the following exercises, the Taylor remainder estimate [latex]{R}_{n}\le \frac{M}{\left(n+1\right)\text{!}}{|x-a|}^{n+1}[/latex] guarantees that the integral of the Taylor polynomial of the given order approximates the integral of [latex]f[/latex] with an error less than [latex]\frac{1}{10}[/latex].

  1. Evaluate the integral of the appropriate Taylor polynomial and verify that it approximates the CAS value with an error less than [latex]\frac{1}{100}[/latex].
  2. Compare the accuracy of the polynomial integral estimate with the remainder estimate.

70. [T] [latex]{\displaystyle\int }_{0}^{\pi }\frac{\sin{t}}{t}dt;{P}_{s}=1-\frac{{x}^{2}}{3\text{!}}+\frac{{x}^{4}}{5\text{!}}-\frac{{x}^{6}}{7\text{!}}+\frac{{x}^{8}}{9\text{!}}[/latex] (You may assume that the absolute value of the ninth derivative of [latex]\frac{\sin{t}}{t}[/latex] is bounded by [latex]0.1.[/latex])

71. [T] [latex]{\displaystyle\int }_{0}^{2}{e}^{\text{-}{x}^{2}}dx;{p}_{11}=1-{x}^{2}+\frac{{x}^{4}}{2}-\frac{{x}^{6}}{3\text{!}}+\cdots-\frac{{x}^{22}}{11\text{!}}[/latex] (You may assume that the absolute value of the [latex]23\text{rd}[/latex] derivative of [latex]{e}^{\text{-}{x}^{2}}[/latex] is less than [latex]2\times {10}^{14}.[/latex])

The following exercises deal with Fresnel integrals.

72. The Fresnel integrals are defined by [latex]C\left(x\right)={\displaystyle\int }_{0}^{x}\cos\left({t}^{2}\right)dt[/latex] and [latex]S\left(x\right)={\displaystyle\int }_{0}^{x}\sin\left({t}^{2}\right)dt[/latex]. Compute the power series of [latex]C\left(x\right)[/latex] and [latex]S\left(x\right)[/latex] and plot the sums [latex]{C}_{N}\left(x\right)[/latex] and [latex]{S}_{N}\left(x\right)[/latex] of the first [latex]N=50[/latex] nonzero terms on [latex]\left[0,2\pi \right][/latex].

73. [T] The Fresnel integrals are used in design applications for roadways and railways and other applications because of the curvature properties of the curve with coordinates [latex]\left(C\left(t\right),S\left(t\right)\right)[/latex]. Plot the curve [latex]\left({C}_{50},{S}_{50}\right)[/latex] for [latex]0\le t\le 2\pi[/latex], the coordinates of which were computed in the previous exercise.

74. Estimate [latex]{\displaystyle\int }_{0}^{\frac{1}{4}}\sqrt{x-{x}^{2}}dx[/latex] by approximating [latex]\sqrt{1-x}[/latex] using the binomial approximation [latex]1-\frac{x}{2}-\frac{{x}^{2}}{8}-\frac{{x}^{3}}{16}-\frac{5{x}^{4}}{2128}-\frac{7{x}^{5}}{256}[/latex].

75. [T] Use Newton’s approximation of the binomial [latex]\sqrt{1-{x}^{2}}[/latex] to approximate [latex]\pi[/latex] as follows. The circle centered at [latex]\left(\frac{1}{2},0\right)[/latex] with radius [latex]\frac{1}{2}[/latex] has upper semicircle [latex]y=\sqrt{x}\sqrt{1-x}[/latex]. The sector of this circle bounded by the [latex]x[/latex] -axis between [latex]x=0[/latex] and [latex]x=\frac{1}{2}[/latex] and by the line joining [latex]\left(\frac{1}{4},\frac{\sqrt{3}}{4}\right)[/latex] corresponds to [latex]\frac{1}{6}[/latex] of the circle and has area [latex]\frac{\pi }{24}[/latex]. This sector is the union of a right triangle with height [latex]\frac{\sqrt{3}}{4}[/latex] and base [latex]\frac{1}{4}[/latex] and the region below the graph between [latex]x=0[/latex] and [latex]x=\frac{1}{4}[/latex]. To find the area of this region you can write [latex]y=\sqrt{x}\sqrt{1-x}=\sqrt{x}\times \left(\text{binomial expansion of}\sqrt{1-x}\right)[/latex] and integrate term by term. Use this approach with the binomial approximation from the previous exercise to estimate [latex]\pi[/latex].

76. Use the approximation [latex]T\approx 2\pi \sqrt{\frac{L}{g}}\left(1+\frac{{k}^{2}}{4}\right)[/latex] to approximate the period of a pendulum having length [latex]10[/latex] meters and maximum angle [latex]{\theta }_{\text{max}}=\frac{\pi }{6}[/latex] where [latex]k=\sin\left(\frac{{\theta }_{\text{max}}}{2}\right)[/latex]. Compare this with the small angle estimate [latex]T\approx 2\pi \sqrt{\frac{L}{g}}[/latex].

77. Suppose that a pendulum is to have a period of [latex]2[/latex] seconds and a maximum angle of [latex]{\theta }_{\text{max}}=\frac{\pi }{6}[/latex]. Use [latex]T\approx 2\pi \sqrt{\frac{L}{g}}\left(1+\frac{{k}^{2}}{4}\right)[/latex] to approximate the desired length of the pendulum. What length is predicted by the small angle estimate [latex]T\approx 2\pi \sqrt{\frac{L}{g}}?[/latex]

78. Evaluate [latex]{\displaystyle\int }_{0}^{\frac{\pi}{2}}{\sin}^{4}\theta d\theta[/latex] in the approximation [latex]T=4\sqrt{\frac{L}{g}}{\displaystyle\int }_{0}^{\frac{\pi}{2}}\left(1+\frac{1}{2}{k}^{2}{\sin}^{2}\theta +\frac{3}{8}{k}^{4}{\sin}^{4}\theta +\cdots\right)d\theta[/latex] to obtain an improved estimate for [latex]T[/latex].

79. [T] An equivalent formula for the period of a pendulum with amplitude [latex]{\theta }_{\text{max}}[/latex] is [latex]T\left({\theta }_{\text{max}}\right)=2\sqrt{2}\sqrt{\frac{L}{g}}{\displaystyle\int }_{0}^{{\theta }_{\text{max}}}\frac{d\theta }{\sqrt{\cos\theta }-\cos\left({\theta }_{\text{max}}\right)}[/latex] where [latex]L[/latex] is the pendulum length and [latex]g[/latex] is the gravitational acceleration constant. When [latex]{\theta }_{\text{max}}=\frac{\pi }{3}[/latex] we get [latex]\frac{1}{\sqrt{\cos{t} - \frac{1}{2}}}\approx \sqrt{2}\left(1+\frac{{t}^{2}}{2}+\frac{{t}^{4}}{3}+\frac{181{t}^{6}}{720}\right)[/latex]. Integrate this approximation to estimate [latex]T\left(\frac{\pi }{3}\right)[/latex] in terms of [latex]L[/latex] and [latex]g[/latex]. Assuming [latex]g=9.806[/latex] meters per second squared, find an approximate length [latex]L[/latex] such that [latex]T\left(\frac{\pi }{3}\right)=2[/latex] seconds.