Problem Set: Taylor and Maclaurin Series

In the following exercises, find the Taylor polynomials of degree two approximating the given function centered at the given point.

1. [latex]f\left(x\right)=1+x+{x}^{2}[/latex] at [latex]a=1[/latex]

2. [latex]f\left(x\right)=1+x+{x}^{2}[/latex] at [latex]a=-1[/latex]

3. [latex]f\left(x\right)=\cos\left(2x\right)[/latex] at [latex]a=\pi [/latex]

4. [latex]f\left(x\right)=\sin\left(2x\right)[/latex] at [latex]a=\frac{\pi }{2}[/latex]

5. [latex]f\left(x\right)=\sqrt{x}[/latex] at [latex]a=4[/latex]

6. [latex]f\left(x\right)=\text{ln}x[/latex] at [latex]a=1[/latex]

7. [latex]f\left(x\right)=\frac{1}{x}[/latex] at [latex]a=1[/latex]

8. [latex]f\left(x\right)={e}^{x}[/latex] at [latex]a=1[/latex]

In the following exercises, verify that the given choice of n in the remainder estimate [latex]|{R}_{n}|\le \frac{M}{\left(n+1\right)\text{!}}{\left(x-a\right)}^{n+1}[/latex], where M is the maximum value of [latex]|{f}^{\left(n+1\right)}\left(z\right)|[/latex] on the interval between a and the indicated point, yields [latex]|{R}_{n}|\le \frac{1}{1000}[/latex]. Find the value of the Taylor polynomial pn of [latex]f[/latex] at the indicated point.

9. [T] [latex]\sqrt{10};a=9,n=3[/latex]

10. [T] [latex]{\left(28\right)}^{\frac{1}{3}};a=27,n=1[/latex]

11. [T] [latex]\sin\left(6\right);a=2\pi ,n=5[/latex]

12. [T] e2; [latex]a=0,n=9[/latex]

13. [T] [latex]\cos\left(\frac{\pi }{5}\right);a=0,n=4[/latex]

14. [T] [latex]\text{ln}\left(2\right);a=1,n=1000[/latex]

15. Integrate the approximation [latex]\sin{t}\approx t-\frac{{t}^{3}}{6}+\frac{{t}^{5}}{120}-\frac{{t}^{7}}{5040}[/latex] evaluated at πt to approximate [latex]{\displaystyle\int }_{0}^{1}\frac{\sin\pi t}{\pi t}dt[/latex].

16. Integrate the approximation [latex]{e}^{x}\approx 1+x+\frac{{x}^{2}}{2}+\cdots+\frac{{x}^{6}}{720}[/latex] evaluated at −x2 to approximate [latex]{\displaystyle\int }_{0}^{1}{e}^{\text{-}{x}^{2}}dx[/latex].

In the following exercises, find the smallest value of n such that the remainder estimate [latex]|{R}_{n}|\le \frac{M}{\left(n+1\right)\text{!}}{\left(x-a\right)}^{n+1}[/latex], where M is the maximum value of [latex]|{f}^{\left(n+1\right)}\left(z\right)|[/latex] on the interval between a and the indicated point, yields [latex]|{R}_{n}|\le \frac{1}{1000}[/latex] on the indicated interval.

17. [latex]f\left(x\right)=\sin{x}[/latex] on [latex]\left[\text{-}\pi ,\pi \right],a=0[/latex]

18. [latex]f\left(x\right)=\cos{x}[/latex] on [latex]\left[-\frac{\pi }{2},\frac{\pi }{2}\right],a=0[/latex]

19. [latex]f\left(x\right)={e}^{-2x}[/latex] on [latex]\left[-1,1\right],a=0[/latex]

20. [latex]f\left(x\right)={e}^{\text{-}x}[/latex] on [latex]\left[-3,3\right],a=0[/latex]

In the following exercises, the maximum of the right-hand side of the remainder estimate [latex]|{R}_{1}|\le \frac{\text{max}|f\text{''}\left(z\right)|}{2}{R}^{2}[/latex] on [latex]\left[a-R,a+R\right][/latex] occurs at a or [latex]a\pm R[/latex]. Estimate the maximum value of R such that [latex]\frac{\text{max}|f\text{''}\left(z\right)|}{2}{R}^{2}\le 0.1[/latex] on [latex]\left[a-R,a+R\right][/latex] by plotting this maximum as a function of R.

21. [T] ex approximated by [latex]1+x,a=0[/latex]

22. [T] [latex]\sin{x}[/latex] approximated by x, [latex]a=0[/latex]

23. [T] [latex]\text{ln}x[/latex] approximated by [latex]x - 1,a=1[/latex]

24. [T] [latex]\cos{x}[/latex] approximated by [latex]1,a=0[/latex]

In the following exercises, find the Taylor series of the given function centered at the indicated point.

25. [latex]{x}^{4}[/latex] at [latex]a=-1[/latex]

26. [latex]1+x+{x}^{2}+{x}^{3}[/latex] at [latex]a=-1[/latex]

27. [latex]\sin{x}[/latex] at [latex]a=\pi [/latex]

28. [latex]\cos{x}[/latex] at [latex]a=2\pi [/latex]

29. [latex]\sin{x}[/latex] at [latex]x=\frac{\pi }{2}[/latex]

30. [latex]\cos{x}[/latex] at [latex]x=\frac{\pi }{2}[/latex]

31. [latex]{e}^{x}[/latex] at [latex]a=-1[/latex]

32. [latex]{e}^{x}[/latex] at [latex]a=1[/latex]

33. [latex]\frac{1}{{\left(x - 1\right)}^{2}}[/latex] at [latex]a=0[/latex] (Hint: Differentiate [latex]\frac{1}{1-x}.[/latex])

34. [latex]\frac{1}{{\left(x - 1\right)}^{3}}[/latex] at [latex]a=0[/latex]

35. [latex]F\left(x\right)={\displaystyle\int }_{0}^{x}\cos\left(\sqrt{t}\right)dt;f\left(t\right)=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{t}^{n}}{\left(2n\right)\text{!}}[/latex] at [latex]a=0[/latex] (Note: [latex]f[/latex] is the Taylor series of [latex]\cos\left(\sqrt{t}\right).[/latex])

In the following exercises, compute the Taylor series of each function around [latex]x=1[/latex].

36. [latex]f\left(x\right)=2-x[/latex]

37. [latex]f\left(x\right)={x}^{3}[/latex]

38. [latex]f\left(x\right)={\left(x - 2\right)}^{2}[/latex]

39. [latex]f\left(x\right)=\text{ln}x[/latex]

40. [latex]f\left(x\right)=\frac{1}{x}[/latex]

41. [latex]f\left(x\right)=\frac{1}{2x-{x}^{2}}[/latex]

42. [latex]f\left(x\right)=\frac{x}{4x - 2{x}^{2}-1}[/latex]

43. [latex]f\left(x\right)={e}^{\text{-}x}[/latex]

44. [latex]f\left(x\right)={e}^{2x}[/latex]

[T] In the following exercises, identify the value of x such that the given series [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}[/latex] is the value of the Maclaurin series of [latex]f\left(x\right)[/latex] at [latex]x[/latex]. Approximate the value of [latex]f\left(x\right)[/latex] using [latex]{S}_{10}=\displaystyle\sum _{n=0}^{10}{a}_{n}[/latex].

45. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{1}{n\text{!}}[/latex]

46. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{2}^{n}}{n\text{!}}[/latex]

47. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{\left(-1\right)}^{n}{\left(2\pi \right)}^{2n}}{\left(2n\right)\text{!}}[/latex]

48. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{\left(-1\right)}^{n}{\left(2\pi \right)}^{2n+1}}{\left(2n+1\right)\text{!}}[/latex]

The following exercises make use of the functions [latex]{S}_{5}\left(x\right)=x-\frac{{x}^{3}}{6}+\frac{{x}^{5}}{120}[/latex] and [latex]{C}_{4}\left(x\right)=1-\frac{{x}^{2}}{2}+\frac{{x}^{4}}{24}[/latex] on [latex]\left[\text{-}\pi ,\pi \right][/latex].

49. [T] Plot [latex]{\sin}^{2}x-{\left({S}_{5}\left(x\right)\right)}^{2}[/latex] on [latex]\left[\text{-}\pi ,\pi \right][/latex]. Compare the maximum difference with the square of the Taylor remainder estimate for [latex]\sin{x}[/latex].

50. [T] Plot [latex]{\cos}^{2}x-{\left({C}_{4}\left(x\right)\right)}^{2}[/latex] on [latex]\left[\text{-}\pi ,\pi \right][/latex]. Compare the maximum difference with the square of the Taylor remainder estimate for [latex]\cos{x}[/latex].

51. [T] Plot [latex]|2{S}_{5}\left(x\right){C}_{4}\left(x\right)-\sin\left(2x\right)|[/latex] on [latex]\left[\text{-}\pi ,\pi \right][/latex].

52. [T] Compare [latex]\frac{{S}_{5}\left(x\right)}{{C}_{4}\left(x\right)}[/latex] on [latex]\left[-1,1\right][/latex] to [latex]\tan{x}[/latex]. Compare this with the Taylor remainder estimate for the approximation of [latex]\tan{x}[/latex] by [latex]x+\frac{{x}^{3}}{3}+\frac{2{x}^{5}}{15}[/latex].

53. [T] Plot [latex]{e}^{x}-{e}_{4}\left(x\right)[/latex] where [latex]{e}_{4}\left(x\right)=1+x+\frac{{x}^{2}}{2}+\frac{{x}^{3}}{6}+\frac{{x}^{4}}{24}[/latex] on [latex]\left[0,2\right][/latex]. Compare the maximum error with the Taylor remainder estimate.

54. (Taylor approximations and root finding.) Recall that Newton’s method [latex]{x}_{n+1}={x}_{n}-\frac{f\left({x}_{n}\right)}{f\prime \left({x}_{n}\right)}[/latex] approximates solutions of [latex]f\left(x\right)=0[/latex] near the input [latex]{x}_{0}[/latex].

  1. If [latex]f[/latex] and [latex]g[/latex] are inverse functions, explain why a solution of [latex]g\left(x\right)=a[/latex] is the value [latex]f\left(a\right)\text{of}f[/latex].
  2. Let [latex]{p}_{N}\left(x\right)[/latex] be the [latex]N\text{th}[/latex] degree Maclaurin polynomial of [latex]{e}^{x}[/latex]. Use Newton’s method to approximate solutions of [latex]{p}_{N}\left(x\right)-2=0[/latex] for [latex]N=4,5,6[/latex].
  3. Explain why the approximate roots of [latex]{p}_{N}\left(x\right)-2=0[/latex] are approximate values of [latex]\text{ln}\left(2\right)[/latex].

In the following exercises, use the fact that if [latex]q\left(x\right)=\displaystyle\sum _{n=1}^{\infty }{a}_{n}{\left(x-c\right)}^{n}[/latex] converges in an interval containing [latex]c[/latex], then [latex]\underset{x\to c}{\text{lim}}q\left(x\right)={a}_{0}^{}[/latex] to evaluate each limit using Taylor series.

55. [latex]\underset{x\to 0}{\text{lim}}\frac{\cos{x} - 1}{{x}^{2}}[/latex]

56. [latex]\underset{x\to 0}{\text{lim}}\frac{\text{ln}\left(1-{x}^{2}\right)}{{x}^{2}}[/latex]

57. [latex]\underset{x\to 0}{\text{lim}}\frac{{e}^{{x}^{2}}-{x}^{2}-1}{{x}^{4}}[/latex]

58. [latex]\underset{x\to {0}^{+}}{\text{lim}}\frac{\cos\left(\sqrt{x}\right)-1}{2x}[/latex]