Problem Set: Properties of Power Series

1. If [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }\frac{{x}^{n}}{n\text{!}}[/latex] and [latex]g\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{n}}{n\text{!}}[/latex], find the power series of [latex]\frac{1}{2}\left(f\left(x\right)+g\left(x\right)\right)[/latex] and of [latex]\frac{1}{2}\left(f\left(x\right)-g\left(x\right)\right)[/latex].

2. If [latex]C\left(x\right)=\displaystyle\sum _{n=0}^{\infty }\frac{{x}^{2n}}{\left(2n\right)\text{!}}[/latex] and [latex]S\left(x\right)=\displaystyle\sum _{n=0}^{\infty }\frac{{x}^{2n+1}}{\left(2n+1\right)\text{!}}[/latex], find the power series of [latex]C\left(x\right)+S\left(x\right)[/latex] and of [latex]C\left(x\right)-S\left(x\right)[/latex].

In the following exercises, use partial fractions to find the power series of each function.

3. [latex]\frac{4}{\left(x - 3\right)\left(x+1\right)}[/latex]

4. [latex]\frac{3}{\left(x+2\right)\left(x - 1\right)}[/latex]

5. [latex]\frac{5}{\left({x}^{2}+4\right)\left({x}^{2}-1\right)}[/latex]

6. [latex]\frac{30}{\left({x}^{2}+1\right)\left({x}^{2}-9\right)}[/latex]

In the following exercises, express each series as a rational function.

7. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{x}^{n}}[/latex]

8. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{x}^{2n}}[/latex]

9. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{{\left(x - 3\right)}^{2n - 1}}[/latex]

10. [latex]\displaystyle\sum _{n=1}^{\infty }\left(\frac{1}{{\left(x - 3\right)}^{2n - 1}}-\frac{1}{{\left(x - 2\right)}^{2n - 1}}\right)[/latex]

The following exercises explore applications of annuities.

11. Calculate the present values P of an annuity in which $10,000 is to be paid out annually for a period of 20 years, assuming interest rates of [latex]r=0.03,r=0.05[/latex], and [latex]r=0.07[/latex].

12. Calculate the present values P of annuities in which $9,000 is to be paid out annually perpetually, assuming interest rates of [latex]r=0.03,r=0.05[/latex] and [latex]r=0.07[/latex].

13. Calculate the annual payouts C to be given for 20 years on annuities having present value $100,000 assuming respective interest rates of [latex]r=0.03,r=0.05[/latex], and [latex]r=0.07[/latex].

14. Calculate the annual payouts C to be given perpetually on annuities having present value $100,000 assuming respective interest rates of [latex]r=0.03,r=0.05[/latex], and [latex]r=0.07[/latex].

15. Suppose that an annuity has a present value [latex]P=1\text{million dollars}[/latex]. What interest rate r would allow for perpetual annual payouts of $50,000?

16. Suppose that an annuity has a present value [latex]P=10\text{million dollars}\text{.}[/latex] What interest rate r would allow for perpetual annual payouts of $100,000?

In the following exercises, express the sum of each power series in terms of geometric series, and then express the sum as a rational function.

17. [latex]x+{x}^{2}-{x}^{3}+{x}^{4}+{x}^{5}-{x}^{6}+\cdots[/latex] (Hint: Group powers x3k, [latex]{x}^{3k - 1}[/latex], and [latex]{x}^{3k - 2}.[/latex])

18. [latex]x+{x}^{2}-{x}^{3}-{x}^{4}+{x}^{5}+{x}^{6}-{x}^{7}-{x}^{8}+\cdots[/latex] (Hint: Group powers x4k, [latex]{x}^{4k - 1}[/latex], etc.)

19. [latex]x-{x}^{2}-{x}^{3}+{x}^{4}-{x}^{5}-{x}^{6}+{x}^{7}-\cdots[/latex] (Hint: Group powers x3k, [latex]{x}^{3k - 1}[/latex], and [latex]{x}^{3k - 2}.[/latex])

20. [latex]\frac{x}{2}+\frac{{x}^{2}}{4}-\frac{{x}^{3}}{8}+\frac{{x}^{4}}{16}+\frac{{x}^{5}}{32}-\frac{{x}^{6}}{64}+\cdots[/latex] (Hint: Group powers [latex]{\left(\frac{x}{2}\right)}^{3k},{\left(\frac{x}{2}\right)}^{3k - 1}[/latex], and [latex]{\left(\frac{x}{2}\right)}^{3k - 2}.[/latex])

In the following exercises, find the power series of [latex]f\left(x\right)g\left(x\right)[/latex] given f and g as defined.

21. [latex]f\left(x\right)=2\displaystyle\sum _{n=0}^{\infty }{x}^{n},g\left(x\right)=\displaystyle\sum _{n=0}^{\infty }n{x}^{n}[/latex]

22. [latex]f\left(x\right)=\displaystyle\sum _{n=1}^{\infty }{x}^{n},g\left(x\right)=\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}{x}^{n}[/latex]. Express the coefficients of [latex]f\left(x\right)g\left(x\right)[/latex] in terms of [latex]{H}_{n}=\displaystyle\sum _{k=1}^{n}\frac{1}{k}[/latex].

23. [latex]f\left(x\right)=g\left(x\right)=\displaystyle\sum _{n=1}^{\infty }{\left(\frac{x}{2}\right)}^{n}[/latex]

24. [latex]f\left(x\right)=g\left(x\right)=\displaystyle\sum _{n=1}^{\infty }n{x}^{n}[/latex]

In the following exercises, differentiate the given series expansion of f term-by-term to obtain the corresponding series expansion for the derivative of f.

25. [latex]f\left(x\right)=\frac{1}{1+x}=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{x}^{n}[/latex]

26. [latex]f\left(x\right)=\frac{1}{1-{x}^{2}}=\displaystyle\sum _{n=0}^{\infty }{x}^{2n}[/latex]

In the following exercises, integrate the given series expansion of [latex]f[/latex] term-by-term from zero to x to obtain the corresponding series expansion for the indefinite integral of [latex]f[/latex].

27. [latex]f\left(x\right)=\frac{2x}{{\left(1+{x}^{2}\right)}^{2}}=\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n}\left(2n\right){x}^{2n - 1}[/latex]

28. [latex]f\left(x\right)=\frac{2x}{1+{x}^{2}}=2\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{x}^{2n+1}[/latex]

In the following exercises, evaluate each infinite series by identifying it as the value of a derivative or integral of geometric series.

29. Evaluate [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n}{{2}^{n}}[/latex] as [latex]{f}^{\prime }\left(\frac{1}{2}\right)[/latex] where [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{x}^{n}[/latex].

30. Evaluate [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n}{{3}^{n}}[/latex] as [latex]{f}^{\prime }\left(\frac{1}{3}\right)[/latex] where [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{x}^{n}[/latex].

31. Evaluate [latex]\displaystyle\sum _{n=2}^{\infty }\frac{n\left(n - 1\right)}{{2}^{n}}[/latex] as [latex]f''\left(\frac{1}{2}\right)[/latex] where [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{x}^{n}[/latex].

32. Evaluate [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{\left(-1\right)}^{n}}{n+1}[/latex] as [latex]{\displaystyle\int }_{0}^{1}f\left(t\right)dt[/latex] where [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{\left(-1\right)}^{n}{x}^{2n}=\frac{1}{1+{x}^{2}}[/latex].

In the following exercises, given that [latex]\frac{1}{1-x}=\displaystyle\sum _{n=0}^{\infty }{x}^{n}[/latex], use term-by-term differentiation or integration to find power series for each function centered at the given point.

33. [latex]f\left(x\right)=\text{ln}x[/latex] centered at [latex]x=1[/latex] (Hint: [latex]x=1-\left(1-x\right)[/latex])

34. [latex]\text{ln}\left(1-x\right)[/latex] at [latex]x=0[/latex]

35. [latex]\text{ln}\left(1-{x}^{2}\right)[/latex] at [latex]x=0[/latex]

36. [latex]f\left(x\right)=\frac{2x}{{\left(1-{x}^{2}\right)}^{2}}[/latex] at [latex]x=0[/latex]

37. [latex]f\left(x\right)={\tan}^{-1}\left({x}^{2}\right)[/latex] at [latex]x=0[/latex]

38. [latex]f\left(x\right)=\text{ln}\left(1+{x}^{2}\right)[/latex] at [latex]x=0[/latex]

39. [latex]f\left(x\right)={\displaystyle\int }_{0}^{x}\text{ln}tdt[/latex] where [latex]\text{ln}\left(x\right)=\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n - 1}\frac{{\left(x - 1\right)}^{n}}{n}[/latex]

40. [T] Evaluate the power series expansion [latex]\text{ln}\left(1+x\right)=\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n - 1}\frac{{x}^{n}}{n}[/latex] at [latex]x=1[/latex] to show that [latex]\text{ln}\left(2\right)[/latex] is the sum of the alternating harmonic series. Use the alternating series test to determine how many terms of the sum are needed to estimate [latex]\text{ln}\left(2\right)[/latex] accurate to within 0.001, and find such an approximation.

41. [T] Subtract the infinite series of [latex]\text{ln}\left(1-x\right)[/latex] from [latex]\text{ln}\left(1+x\right)[/latex] to get a power series for [latex]\text{ln}\left(\frac{1+x}{1-x}\right)[/latex]. Evaluate at [latex]x=\frac{1}{3}[/latex]. What is the smallest N such that the Nth partial sum of this series approximates [latex]\text{ln}\left(2\right)[/latex] with an error less than 0.001?

In the following exercises, using a substitution if indicated, express each series in terms of elementary functions and find the radius of convergence of the sum.

42. [latex]\displaystyle\sum _{k=0}^{\infty }\left({x}^{k}-{x}^{2k+1}\right)[/latex]

43. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{{x}^{3k}}{6k}[/latex]

44. [latex]\displaystyle\sum _{k=1}^{\infty }{\left(1+{x}^{2}\right)}^{\text{-}k}[/latex] using [latex]y=\frac{1}{1+{x}^{2}}[/latex]

45. [latex]\displaystyle\sum _{k=1}^{\infty }{2}^{\text{-}kx}[/latex] using [latex]y={2}^{\text{-}x}[/latex]

46. Show that, up to powers x3 and y3, [latex]E\left(x\right)=\displaystyle\sum _{n=0}^{\infty }\frac{{x}^{n}}{n\text{!}}[/latex] satisfies [latex]E\left(x+y\right)=E\left(x\right)E\left(y\right)[/latex].

47. Differentiate the series [latex]E\left(x\right)=\displaystyle\sum _{n=0}^{\infty }\frac{{x}^{n}}{n\text{!}}[/latex] term-by-term to show that [latex]E\left(x\right)[/latex] is equal to its derivative.

48. Show that if [latex]f\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] is a sum of even powers, that is, [latex]{a}_{n}=0[/latex] if n is odd, then [latex]F={\displaystyle\int }_{0}^{x}f\left(t\right)dt[/latex] is a sum of odd powers, while if f is a sum of odd powers, then F is a sum of even powers.

49. [T] Suppose that the coefficients an of the series [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] are defined by the recurrence relation [latex]{a}_{n}=\frac{{a}_{n - 1}}{n}+\frac{{a}_{n - 2}}{n\left(n - 1\right)}[/latex]. For [latex]{a}_{0}=0[/latex] and [latex]{a}_{1}=1[/latex], compute and plot the sums [latex]{S}_{N}=\displaystyle\sum _{n=0}^{N}{a}_{n}{x}^{n}[/latex] for [latex]N=2,3,4,5[/latex] on [latex]\left[-1,1\right][/latex].

50. [T] Suppose that the coefficients an of the series [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] are defined by the recurrence relation [latex]{a}_{n}=\frac{{a}_{n - 1}}{\sqrt{n}}-\frac{{a}_{n - 2}}{\sqrt{n\left(n - 1\right)}}[/latex]. For [latex]{a}_{0}=1[/latex] and [latex]{a}_{1}=0[/latex], compute and plot the sums [latex]{S}_{N}=\displaystyle\sum _{n=0}^{N}{a}_{n}{x}^{n}[/latex] for [latex]N=2,3,4,5[/latex] on [latex]\left[-1,1\right][/latex].

51. [T] Given the power series expansion [latex]\text{ln}\left(1+x\right)=\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n - 1}\frac{{x}^{n}}{n}[/latex], determine how many terms N of the sum evaluated at [latex]x=-\frac{1}{2}[/latex] are needed to approximate [latex]\text{ln}\left(2\right)[/latex] accurate to within [latex]\frac{1}{1000}[/latex]. Evaluate the corresponding partial sum [latex]\displaystyle\sum _{n=1}^{N}{\left(-1\right)}^{n - 1}\frac{{x}^{n}}{n}[/latex].

52. [T] Given the power series expansion [latex]{\tan}^{-1}\left(x\right)=\displaystyle\sum _{k=0}^{\infty }{\left(-1\right)}^{k}\frac{{x}^{2k+1}}{2k+1}[/latex], use the alternating series test to determine how many terms N of the sum evaluated at [latex]x=1[/latex] are needed to approximate [latex]{\tan}^{-1}\left(1\right)=\frac{\pi }{4}[/latex] accurate to within [latex]\frac{1}{1000}[/latex]. Evaluate the corresponding partial sum [latex]\displaystyle\sum _{k=0}^{N}{\left(-1\right)}^{k}\frac{{x}^{2k+1}}{2k+1}[/latex].

53. [T] Recall that [latex]{\tan}^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi }{6}[/latex]. Assuming an exact value of [latex]\left(\frac{1}{\sqrt{3}}\right)[/latex], estimate [latex]\frac{\pi }{6}[/latex] by evaluating partial sums [latex]{S}_{N}\left(\frac{1}{\sqrt{3}}\right)[/latex] of the power series expansion [latex]{\tan}^{-1}\left(x\right)=\displaystyle\sum _{k=0}^{\infty }{\left(-1\right)}^{k}\frac{{x}^{2k+1}}{2k+1}[/latex] at [latex]x=\frac{1}{\sqrt{3}}[/latex]. What is the smallest number N such that [latex]6{S}_{N}\left(\frac{1}{\sqrt{3}}\right)[/latex] approximates π accurately to within 0.001? How many terms are needed for accuracy to within 0.00001?