Problem Set: Power Series and Functions

In the following exercises, state whether each statement is true, or give an example to show that it is false.

1. If [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{x}^{n}[/latex] converges, then [latex]{a}_{n}{x}^{n}\to 0[/latex] as [latex]n\to \infty [/latex].

2. [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{x}^{n}[/latex] converges at [latex]x=0[/latex] for any real numbers [latex]{a}_{n}[/latex].

3. Given any sequence [latex]{a}_{n}[/latex], there is always some [latex]R>0[/latex], possibly very small, such that [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{x}^{n}[/latex] converges on [latex]\left(\text{-}R,R\right)[/latex].

4. If [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{x}^{n}[/latex] has radius of convergence [latex]R>0[/latex] and if [latex]|{b}_{n}|\le |{a}_{n}|[/latex] for all n, then the radius of convergence of [latex]\displaystyle\sum _{n=1}^{\infty }{b}_{n}{x}^{n}[/latex] is greater than or equal to R.

5. Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{\left(x - 3\right)}^{n}[/latex] converges at [latex]x=6[/latex]. At which of the following points must the series also converge? Use the fact that if [latex]\displaystyle\sum {a}_{n}{\left(x-c\right)}^{n}[/latex] converges at x, then it converges at any point closer to c than x.

  1. [latex]x=1[/latex]
  2. [latex]x=2[/latex]
  3. [latex]x=3[/latex]
  4. [latex]x=0[/latex]
  5. [latex]x=5.99[/latex]
  6. [latex]x=0.000001[/latex]

6. Suppose that [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{\left(x+1\right)}^{n}[/latex] converges at [latex]x=-2[/latex].
At which of the following points must the series also converge? Use the fact that if [latex]\displaystyle\sum {a}_{n}{\left(x-c\right)}^{n}[/latex] converges at x, then it converges at any point closer to c than x.

  1. [latex]x=2[/latex]
  2. [latex]x=-1[/latex]
  3. [latex]x=-3[/latex]
  4. [latex]x=0[/latex]
  5. [latex]x=0.99[/latex]
  6. [latex]x=0.000001[/latex]

In the following exercises, suppose that [latex]|\frac{{a}_{n+1}}{{a}_{n}}|\to 1[/latex] as [latex]n\to \infty [/latex]. Find the radius of convergence for each series.

7. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{2}^{n}{x}^{n}[/latex]

8. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{a}_{n}{x}^{n}}{{2}^{n}}[/latex]

9. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{a}_{n}{\pi }^{n}{x}^{n}}{{e}^{n}}[/latex]

10. [latex]\displaystyle\sum _{n=0}^{\infty }\frac{{a}_{n}{\left(-1\right)}^{n}{x}^{n}}{{10}^{n}}[/latex]

11. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{\left(-1\right)}^{n}{x}^{2n}[/latex]

12. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{\left(-4\right)}^{n}{x}^{2n}[/latex]

In the following exercises, find the radius of convergence R and interval of convergence for [latex]\displaystyle\sum {a}_{n}{x}^{n}[/latex] with the given coefficients [latex]{a}_{n}[/latex].

13. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\left(2x\right)}^{n}}{n}[/latex]

14. [latex]\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{n}}{\sqrt{n}}[/latex]

15. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n{x}^{n}}{{2}^{n}}[/latex]

16. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n{x}^{n}}{{e}^{n}}[/latex]

17. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{n}^{2}{x}^{n}}{{2}^{n}}[/latex]

18. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{{k}^{e}{x}^{k}}{{e}^{k}}[/latex]

19. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{{\pi }^{k}{x}^{k}}{{k}^{\pi }}[/latex]

20. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{x}^{n}}{n\text{!}}[/latex]

21. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{10}^{n}{x}^{n}}{n\text{!}}[/latex]

22. [latex]\displaystyle\sum _{n=1}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{n}}{\text{ln}\left(2n\right)}[/latex]

In the following exercises, find the radius of convergence of each series.

23. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{{\left(k\text{!}\right)}^{2}{x}^{k}}{\left(2k\right)\text{!}}[/latex]

24. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\left(2n\right)\text{!}{x}^{n}}{{n}^{2n}}[/latex]

25. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{k\text{!}}{1\cdot 3\cdot 5\text{$\cdots$ }\left(2k - 1\right)}{x}^{k}[/latex]

26. [latex]\displaystyle\sum _{k=1}^{\infty }\frac{2\cdot 4\cdot 6\text{$\cdots$ }2k}{\left(2k\right)\text{!}}{x}^{k}[/latex]

27. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{x}^{n}}{\left(\begin{array}{c}2n\\ n\end{array}\right)}[/latex] where [latex]\left(\begin{array}{c}n\\ k\end{array}\right)=\frac{n\text{!}}{k\text{!}\left(n-k\right)\text{!}}[/latex]

28. [latex]\displaystyle\sum _{n=1}^{\infty }{\sin}^{2}n{x}^{n}[/latex]

In the following exercises, use the ratio test to determine the radius of convergence of each series.

29. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{\left(n\text{!}\right)}^{3}}{\left(3n\right)\text{!}}{x}^{n}[/latex]

30. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{2}^{3n}{\left(n\text{!}\right)}^{3}}{\left(3n\right)\text{!}}{x}^{n}[/latex]

31. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{n\text{!}}{{n}^{n}}{x}^{n}[/latex]

32. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{\left(2n\right)\text{!}}{{n}^{2n}}{x}^{n}[/latex]

In the following exercises, given that [latex]\frac{1}{1-x}=\displaystyle\sum _{n=0}^{\infty }{x}^{n}[/latex] with convergence in [latex]\left(-1,1\right)[/latex], find the power series for each function with the given center a, and identify its interval of convergence.

33. [latex]f\left(x\right)=\frac{1}{x};a=1[/latex] (Hint: [latex]\frac{1}{x}=\frac{1}{1-\left(1-x\right)}[/latex])

34. [latex]f\left(x\right)=\frac{1}{1-{x}^{2}};a=0[/latex]

35. [latex]f\left(x\right)=\frac{x}{1-{x}^{2}};a=0[/latex]

36. [latex]f\left(x\right)=\frac{1}{1+{x}^{2}};a=0[/latex]

37. [latex]f\left(x\right)=\frac{{x}^{2}}{1+{x}^{2}};a=0[/latex]

38. [latex]f\left(x\right)=\frac{1}{2-x};a=1[/latex]

39. [latex]f\left(x\right)=\frac{1}{1 - 2x};a=0[/latex].

40. [latex]f\left(x\right)=\frac{1}{1 - 4{x}^{2}};a=0[/latex]

41. [latex]f\left(x\right)=\frac{{x}^{2}}{1 - 4{x}^{2}};a=0[/latex]

42. [latex]f\left(x\right)=\frac{{x}^{2}}{5 - 4x+{x}^{2}};a=2[/latex]

Use the next exercise to find the radius of convergence of the given series in the subsequent exercises.

43. Explain why, if [latex]{|{a}_{n}|}^{\frac{1}{n}}\to r>0[/latex], then [latex]{|{a}_{n}{x}^{n}|}^{\frac{1}{n}}\to |x|r<1[/latex] whenever [latex]|x|<\frac{1}{r}[/latex] and, therefore, the radius of convergence of [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}{x}^{n}[/latex] is [latex]R=\frac{1}{r}[/latex].

44. [latex]\displaystyle\sum _{n=1}^{\infty }\frac{{x}^{n}}{{n}^{n}}[/latex]

45. [latex]\displaystyle\sum _{k=1}^{\infty }{\left(\frac{k - 1}{2k+3}\right)}^{k}{x}^{k}[/latex]

46. [latex]\displaystyle\sum _{k=1}^{\infty }{\left(\frac{2{k}^{2}-1}{{k}^{2}+3}\right)}^{k}{x}^{k}[/latex]

47. [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}={\left({n}^{\frac{1}{n}}-1\right)}^{n}{x}^{n}[/latex]

48. Suppose that [latex]p\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] such that [latex]{a}_{n}=0[/latex] if n is odd. Explain why [latex]p\left(x\right)=-p\left(\text{-}x\right)[/latex].

49. Suppose that [latex]p\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] such that [latex]{a}_{n}=0[/latex] if n is even. Explain why [latex]p\left(x\right)=p\left(\text{-}x\right)[/latex].

50. Suppose that [latex]p\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges on [latex]\left(-1,1\right][/latex].
Find the interval of convergence of [latex]p\left(Ax\right)[/latex].

51. Suppose that [latex]p\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] converges on [latex]\left(-1,1\right][/latex]. Find the interval of convergence of [latex]p\left(2x - 1\right)[/latex].

In the following exercises, suppose that [latex]p\left(x\right)=\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{n}[/latex] satisfies [latex]\underset{n\to \infty }{\text{lim}}\frac{{a}_{n+1}}{{a}_{n}}=1[/latex] where [latex]{a}_{n}\ge 0[/latex] for each n. State whether each series converges on the full interval [latex]\left(-1,1\right)[/latex], or if there is not enough information to draw a conclusion. Use the comparison test when appropriate.

52. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{n}{x}^{2n}[/latex]

53. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{2n}{x}^{2n}[/latex]

54. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{2n}{x}^{n}\left(Hint\text{:}x=\pm \sqrt{{x}^{2}}\right)[/latex]

55. [latex]\displaystyle\sum _{n=0}^{\infty }{a}_{{n}^{2}}{x}^{{n}^{2}}[/latex] (Hint: Let [latex]{b}_{k}={a}_{k}[/latex] if [latex]k={n}^{2}[/latex] for some n, otherwise [latex]{b}_{k}=0.[/latex])

56. Suppose that [latex]p\left(x\right)[/latex] is a polynomial of degree N. Find the radius and interval of convergence of [latex]\displaystyle\sum _{n=1}^{\infty }p\left(n\right){x}^{n}[/latex].

57. [T] Plot the graphs of [latex]\frac{1}{1-x}[/latex] and of the partial sums [latex]{S}_{N}=\displaystyle\sum _{n=0}^{N}{x}^{n}[/latex] for [latex]n=10,20,30[/latex] on the interval [latex]\left[-0.99,0.99\right][/latex]. Comment on the approximation of [latex]\frac{1}{1-x}[/latex] by [latex]{S}_{N}[/latex] near [latex]x=-1[/latex] and near [latex]x=1[/latex] as N increases.

58. [T] Plot the graphs of [latex]\text{-}\text{ln}\left(1-x\right)[/latex] and of the partial sums [latex]{S}_{N}=\displaystyle\sum _{n=1}^{N}\frac{{x}^{n}}{n}[/latex] for [latex]n=10,50,100[/latex] on the interval [latex]\left[-0.99,0.99\right][/latex]. Comment on the behavior of the sums near [latex]x=-1[/latex] and near [latex]x=1[/latex] as N increases.

59. [T] Plot the graphs of the partial sums [latex]{S}_{n}=\displaystyle\sum _{n=1}^{N}\frac{{x}^{n}}{{n}^{2}}[/latex] for [latex]n=10,50,100[/latex] on the interval [latex]\left[-0.99,0.99\right][/latex]. Comment on the behavior of the sums near [latex]x=-1[/latex] and near [latex]x=1[/latex] as N increases.

60. [T] Plot the graphs of the partial sums [latex]{S}_{N}=\displaystyle\sum _{n=1}^{N}\sin{n}{x}^{n}[/latex] for [latex]n=10,50,100[/latex] on the interval [latex]\left[-0.99,0.99\right][/latex]. Comment on the behavior of the sums near [latex]x=-1[/latex] and near [latex]x=1[/latex] as N increases.

61. [T] Plot the graphs of the partial sums [latex]{S}_{N}=\displaystyle\sum _{n=0}^{N}{\left(-1\right)}^{n}\frac{{x}^{2n+1}}{\left(2n+1\right)\text{!}}[/latex] for [latex]n=3,5,10[/latex] on the interval [latex]\left[-2\pi ,2\pi \right][/latex]. Comment on how these plots approximate [latex]\sin{x}[/latex] as N increases.

62. [T] Plot the graphs of the partial sums [latex]{S}_{N}=\displaystyle\sum _{n=0}^{N}{\left(-1\right)}^{n}\frac{{x}^{2n}}{\left(2n\right)\text{!}}[/latex] for [latex]n=3,5,10[/latex] on the interval [latex]\left[-2\pi ,2\pi \right][/latex]. Comment on how these plots approximate [latex]\cos{x}[/latex] as N increases.