For the following exercises, sketch the curves below by eliminating the parameter t. Give the orientation of the curve.
1. [latex]x={t}^{2}+2t[/latex], [latex]y=t+1[/latex]
3. [latex]x=2t+4,y=t - 1[/latex]
For the following exercises, eliminate the parameter and sketch the graphs.
5. [latex]x=2{t}^{2},y={t}^{4}+1[/latex]
For the following exercises, use technology (CAS or calculator) to sketch the parametric equations.
7. [T] [latex]\begin{array}{cc}x={e}^{\text{-}t},\hfill & y={e}^{2t}-1\hfill \end{array}[/latex]
9. [T] [latex]\begin{array}{cc}x=\sec{t},\hfill & y=\cos{t}\hfill \end{array}[/latex]
For the following exercises, sketch the parametric equations by eliminating the parameter. Indicate any asymptotes of the graph.
11. [latex]x=6\sin\left(2\theta \right),y=4\cos\left(2\theta \right)[/latex]
13. [latex]\begin{array}{cc}x=3 - 2\cos\theta ,\hfill & y=-5+3\sin\theta \hfill \end{array}[/latex]
15. [latex]\begin{array}{cc}x=\sec{t},\hfill & y=\tan{t}\hfill \end{array}[/latex]
17. [latex]\begin{array}{cc}x={e}^{t},\hfill & y={e}^{2t}\hfill \end{array}[/latex]
19. [latex]\begin{array}{cc}x={t}^{3},\hfill & y=3\text{ln}t\hfill \end{array}[/latex]
For the following exercises, convert the parametric equations of a curve into rectangular form. No sketch is necessary. State the domain of the rectangular form.
21. [latex]\begin{array}{cc}x={t}^{2}-1,\hfill & y=\frac{t}{2}\hfill \end{array}[/latex]
23. [latex]x=4\cos\theta ,y=3\sin\theta ,t\in \left(0,2\pi \right][/latex]
25. [latex]\begin{array}{cc}x=2t - 3,\hfill & y=6t - 7\hfill \end{array}[/latex]
27. [latex]\begin{array}{cc}x=1+\cos{t},\hfill & y=3-\sin{t}\hfill \end{array}[/latex]
29. [latex]\begin{array}{cc}x=\sec{t},\hfill & y=\tan{t},\pi \le t<\frac{3\pi }{2}\hfill \end{array}[/latex]
31. [latex]\begin{array}{cc}x=\cos\left(2t\right),\hfill & y=\sin{t}\hfill \end{array}[/latex]
32. [latex]x=4t+3,y=16{t}^{2}-9[/latex]
33. [latex]\begin{array}{cc}x={t}^{2},\hfill & y=2\text{ln}t,t\ge 1\hfill \end{array}[/latex]
35. [latex]\begin{array}{cc}x={t}^{n},\hfill & y=n\text{ln}t,t\ge 1,\hfill \end{array}[/latex] where n is a natural number
37. [latex]\begin{array}{c}x=2\sin\left(8t\right)\hfill \\ y=2\cos\left(8t\right)\hfill \end{array}[/latex]
For the following exercises, the pairs of parametric equations represent lines, parabolas, circles, ellipses, or hyperbolas. Name the type of basic curve that each pair of equations represents.
39. [latex]\begin{array}{c}x=3t+4\hfill \\ y=5t - 2\hfill \end{array}[/latex]
41. [latex]\begin{array}{c}x=2t+1\hfill \\ y={t}^{2}-3\hfill \end{array}[/latex]
43. [latex]\begin{array}{c}x=2\cos\left(3t\right)\hfill \\ y=2\sin\left(3t\right)\hfill \end{array}[/latex]
45. [latex]\begin{array}{c}x=3\cos{t}\hfill \\ y=4\sin{t}\hfill \end{array}[/latex]
47. [latex]\begin{array}{c}x=3\text{cosh}\left(4t\right)\hfill \\ y=4\text{sinh}\left(4t\right)\hfill \end{array}[/latex]
48. [latex]\begin{array}{c}x=2\text{cosh}t\hfill \\ y=2\text{sinh}t\hfill \end{array}[/latex]
For the following exercises, use a graphing utility to graph the curve represented by the parametric equations and identify the curve from its equation.
51. [T] [latex]\begin{array}{c}x=\theta +\sin\theta \hfill \\ y=1-\cos\theta \hfill \end{array}[/latex]
53. [T] [latex]\begin{array}{c}x=t - 0.5\sin{t}\hfill \\ y=1 - 1.5\cos{t}\hfill \end{array}[/latex]
55. The trajectory of a bullet is given by [latex]x={v}_{0}\left(\cos\alpha \right)ty={v}_{0}\left(\sin\alpha \right)t-\frac{1}{2}g{t}^{2}[/latex] where [latex]{v}_{0}=500\text{m/s,}[/latex] [latex]g=9.8=9.8{\text{m/s}}^{2}[/latex], and [latex]\alpha =30\text{ degrees}[/latex]. When will the bullet hit the ground? How far from the gun will the bullet hit the ground?
57. [T] Use technology to sketch [latex]x=2\tan\left(t\right),y=3\sec\left(t\right),\text{-}\pi
[latex]\begin{array}{}\\ \\ x=\left(a+b\right)\cos{t}-c\cdot \cos\left[\frac{\left(a+b\right)t}{b}\right]\hfill \\ y=\left(a+b\right)\sin{t}-c\cdot \sin\left[\frac{\left(a+b\right)t}{b}\right].\hfill \end{array}[/latex]
Let [latex]a=1,b=2,c=1[/latex].
59. [T] Use technology to sketch the spiral curve given by [latex]x=t\cos\left(t\right),y=t\sin\left(t\right)[/latex] from [latex]-2\pi \le t\le 2\pi[/latex].
61. [T] Sketch the curve given by parametric equations [latex]\begin{array}{c}x=\text{cosh}\left(t\right)\hfill \\ y=\text{sinh}\left(t\right),\hfill \end{array}[/latex] where [latex]-2\le t\le 2[/latex].
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction