Essential Concepts
- Given the infinite series
[latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}={a}_{1}+{a}_{2}+{a}_{3}+\cdots[/latex]
and the corresponding sequence of partial sums [latex]\left\{{S}_{k}\right\}[/latex] where
[latex]{S}_{k}=\displaystyle\sum _{n=1}^{k}{a}_{n}={a}_{1}+{a}_{2}+{a}_{3}+\cdots +{a}_{k}[/latex],
the series converges if and only if the sequence [latex]\left\{{S}_{k}\right\}[/latex] converges. - The geometric series [latex]\displaystyle\sum _{n=1}^{\infty }a{r}^{n - 1}[/latex] converges if [latex]|r|<1[/latex] and diverges if [latex]|r|\ge 1[/latex]. For [latex]|r|<1[/latex],
[latex]\displaystyle\sum _{n=1}^{\infty }a{r}^{n - 1}=\frac{a}{1-r}[/latex]. - The harmonic series
[latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots[/latex]
diverges. - A series of the form [latex]\displaystyle\sum _{n=1}^{\infty }\left[{b}_{n}-{b}_{n+1}\right]=\left[{b}_{1}-{b}_{2}\right]+\left[{b}_{2}-{b}_{3}\right]+\left[{b}_{3}-{b}_{4}\right]+\cdots +\left[{b}_{n}-{b}_{n+1}\right]+\cdots[/latex]
is a telescoping series. The [latex]k\text{th}[/latex] partial sum of this series is given by [latex]{S}_{k}={b}_{1}-{b}_{k+1}[/latex]. The series will converge if and only if [latex]\underset{k\to \infty }{\text{lim}}{b}_{k+1}[/latex] exists. In that case,
[latex]\displaystyle\sum _{n=1}^{\infty }\left[{b}_{n}-{b}_{n+1}\right]={b}_{1}-\underset{k\to \infty }{\text{lim}}\left({b}_{k+1}\right)[/latex].
Key Equations
- Harmonic series
[latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots[/latex] - Sum of a geometric series
[latex]\displaystyle\sum _{n=1}^{\infty }a{r}^{n - 1}=\frac{a}{1-r}\text{ for }|r|<1[/latex]
Glossary
- convergence of a series
- a series converges if the sequence of partial sums for that series converges
- divergence of a series
- a series diverges if the sequence of partial sums for that series diverges
- geometric series
- a geometric series is a series that can be written in the form
[latex]\displaystyle\sum _{n=1}^{\infty }a{r}^{n - 1}=a+ar+a{r}^{2}+a{r}^{3}+\cdots[/latex]
- harmonic series
- the harmonic series takes the form
[latex]\displaystyle\sum _{n=1}^{\infty }\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots[/latex]
- infinite series
- an infinite series is an expression of the form
[latex]{a}_{1}+{a}_{2}+{a}_{3}+\cdots =\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex]
- partial sum
- the [latex]k\text{th}[/latex] partial sum of the infinite series [latex]\displaystyle\sum _{n=1}^{\infty }{a}_{n}[/latex] is the finite sum
[latex]{S}_{k}=\displaystyle\sum _{n=1}^{k}{a}_{n}={a}_{1}+{a}_{2}+{a}_{3}+\cdots +{a}_{k}[/latex]
- telescoping series
- a telescoping series is one in which most of the terms cancel in each of the partial sums
Candela Citations
CC licensed content, Shared previously
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction