Evaluate the following integrals. If the integral is not convergent, answer “divergent.”
1. [latex]{\displaystyle\int }_{2}^{4}\frac{dx}{{\left(x - 3\right)}^{2}}[/latex]
3. [latex]{\displaystyle\int }_{0}^{2}\frac{1}{\sqrt{4-{x}^{2}}}dx[/latex]
5. [latex]{\displaystyle\int }_{1}^{\infty }x{e}^{\text{-}x}dx[/latex]
7. Without integrating, determine whether the integral [latex]{\displaystyle\int }_{1}^{\infty }\frac{1}{\sqrt{{x}^{3}+1}}dx[/latex] converges or diverges by comparing the function [latex]f\left(x\right)=\frac{1}{\sqrt{{x}^{3}+1}}[/latex] with [latex]g\left(x\right)=\frac{1}{\sqrt{{x}^{3}}}[/latex].
Determine whether the improper integrals converge or diverge. If possible, determine the value of the integrals that converge.
9. [latex]{\displaystyle\int }_{0}^{\infty }{e}^{\text{-}x}\cos{x}dx[/latex]
11. [latex]{\displaystyle\int }_{0}^{1}\frac{\text{ln}x}{\sqrt{x}}dx[/latex]
13. [latex]{\displaystyle\int }_{\text{-}\infty }^{\infty }\frac{1}{{x}^{2}+1}dx[/latex]
15. [latex]{\displaystyle\int }_{-2}^{2}\frac{dx}{{\left(1+x\right)}^{2}}[/latex]
17. [latex]{\displaystyle\int }_{0}^{\infty }\sin{x}dx[/latex]
19. [latex]{\displaystyle\int }_{0}^{1}\frac{dx}{\sqrt[3]{x}}[/latex]
21. [latex]{\displaystyle\int }_{-1}^{2}\frac{dx}{{x}^{3}}[/latex]
23. [latex]{\displaystyle\int }_{0}^{3}\frac{1}{x - 1}dx[/latex]
25. [latex]{\displaystyle\int }_{3}^{5}\frac{5}{{\left(x - 4\right)}^{2}}dx[/latex]
Determine the convergence of each of the following integrals by comparison with the given integral. If the integral converges, find the number to which it converges.
27. [latex]{\displaystyle\int }_{1}^{\infty }\frac{dx}{\sqrt{x}+1}[/latex]; compare with [latex]{\displaystyle\int }_{1}^{\infty }\frac{dx}{2\sqrt{x}}[/latex].
Evaluate the integrals. If the integral diverges, answer “diverges.”
29. [latex]{\displaystyle\int }_{0}^{1}\frac{dx}{{x}^{\pi }}[/latex]
31. [latex]{\displaystyle\int }_{0}^{1}\frac{dx}{1-x}[/latex]
33. [latex]{\displaystyle\int }_{-1}^{1}\frac{dx}{\sqrt{1-{x}^{2}}}[/latex]
35. [latex]{\displaystyle\int }_{0}^{e}\text{ln}\left(x\right)dx[/latex]
37. [latex]{\displaystyle\int }_{\text{-}\infty }^{\infty }\frac{x}{{\left({x}^{2}+1\right)}^{2}}dx[/latex]
Evaluate the improper integrals. Each of these integrals has an infinite discontinuity either at an endpoint or at an interior point of the interval.
39. [latex]{\displaystyle\int }_{0}^{9}\frac{dx}{\sqrt{9-x}}[/latex]
41. [latex]{\displaystyle\int }_{0}^{3}\frac{dx}{\sqrt{9-{x}^{2}}}[/latex]
43. [latex]{\displaystyle\int }_{0}^{4}x\text{ln}\left(4x\right)dx[/latex]
45. Evaluate [latex]{\displaystyle\int }_{.5}^{1}\frac{dx}{\sqrt{1-{x}^{2}}}[/latex]. (Be careful!) (Express your answer using three decimal places.)
47. Evaluate [latex]{\displaystyle\int }_{2}^{\infty }\frac{dx}{{\left({x}^{2}-1\right)}^{\frac{3}{2}}}[/latex].
49. Find the area of the region bounded by the curve [latex]y=\frac{7}{{x}^{2}}[/latex], the x-axis, and on the left by [latex]x=1[/latex].
51. Find the area under [latex]y=\frac{5}{1+{x}^{2}}[/latex] in the first quadrant.
53. Find the volume of the solid generated by revolving about the y-axis the region under the curve [latex]y=6{e}^{-2x}[/latex] in the first quadrant.
The Laplace transform of a continuous function over the interval [latex]\left[0,\infty \right)[/latex] is defined by [latex]F\left(s\right)={\displaystyle\int }_{0}^{\infty }{e}^{\text{-}sx}f\left(x\right)dx[/latex] (see the Student Project). This definition is used to solve some important initial-value problems in differential equations, as discussed later. The domain of F is the set of all real numbers s such that the improper integral converges. Find the Laplace transform F of each of the following functions and give the domain of F.
55. [latex]f\left(x\right)=1[/latex]
57. [latex]f\left(x\right)=\cos\left(2x\right)[/latex]
59. Use the formula for arc length to show that the circumference of the circle [latex]{x}^{2}+{y}^{2}=1[/latex] is [latex]2\pi[/latex].
A non-negative function is a probability density function if it satisfies the following definition: [latex]{\displaystyle\int }_{\text{-}\infty }^{\infty }f\left(t\right)dt=1[/latex]. The probability that a random variable x lies between a and b is given by [latex]P\left(a\le x\le b\right)={\displaystyle\int }_{a}^{b}f\left(t\right)dt[/latex].
61. Find the probability that x is between 0 and 0.3. (Use the function defined in the preceding problem.) Use four-place decimal accuracy.
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction