Problem Set: First-order Linear Equations

Are the following differential equations linear? Explain your reasoning.

1. [latex]\frac{dy}{dx}={x}^{2}y+\sin{x}[/latex]

2. [latex]\frac{dy}{dt}=ty[/latex]

3. [latex]\frac{dy}{dt}+{y}^{2}=x[/latex]

4. [latex]y^{\prime} ={x}^{3}+{e}^{x}[/latex]

5. [latex]y^{\prime} =y+{e}^{y}[/latex]

Write the following first-order differential equations in standard form.

6. [latex]y^{\prime} ={x}^{3}y+\sin{x}[/latex]

7. [latex]y^{\prime} +3y-\text{ln}x=0[/latex]

8. [latex]\text{-}xy^{\prime} =\left(3x+2\right)y+x{e}^{x}[/latex]

9. [latex]\frac{dy}{dt}=4y+ty+\tan{t}[/latex]

10. [latex]\frac{dy}{dt}=yx\left(x+1\right)[/latex]

What are the integrating factors for the following differential equations?

11. [latex]y^{\prime} =xy+3[/latex]

12. [latex]y^{\prime} +{e}^{x}y=\sin{x}[/latex]

13. [latex]y^{\prime} =x\text{ln}\left(x\right)y+3x[/latex]

14. [latex]\frac{dy}{dx}=\text{tanh}\left(x\right)y+1[/latex]

15. [latex]\frac{dy}{dt}+3ty={e}^{t}y[/latex]

Solve the following differential equations by using integrating factors.

16. [latex]y^{\prime} =3y+2[/latex]

17. [latex]y^{\prime} =2y-{x}^{2}[/latex]

18. [latex]xy^{\prime} =3y - 6{x}^{2}[/latex]

19. [latex]\left(x+2\right)y^{\prime} =3x+y[/latex]

20. [latex]y^{\prime} =3x+xy[/latex]

21. [latex]xy^{\prime} =x+y[/latex]

22. [latex]\sin\left(x\right)y^{\prime} =y+2x[/latex]

23. [latex]y^{\prime} =y+{e}^{x}[/latex]

24. [latex]xy^{\prime} =3y+{x}^{2}[/latex]

25. [latex]y^{\prime} +\text{ln}x=\frac{y}{x}[/latex]

Solve the following differential equations. Use your calculator to draw a family of solutions. Are there certain initial conditions that change the behavior of the solution?

26. [T] [latex]\left(x+2\right)y^{\prime} =2y - 1[/latex]

27. [T] [latex]y^{\prime} =3{e}^{\frac{t}{3}}-2y[/latex]

28. [T] [latex]xy^{\prime} +\frac{y}{2}=\sin\left(3t\right)[/latex]

29. [T] [latex]xy^{\prime} =2\frac{\cos{x}}{x}-3y[/latex]

30. [T] [latex]\left(x+1\right)y^{\prime} =3y+{x}^{2}+2x+1[/latex]

31. [T] [latex]\sin\left(x\right)y^{\prime} +\cos\left(x\right)y=2x[/latex]

32. [T] [latex]\sqrt{{x}^{2}+1}y^{\prime} =y+2[/latex]

33. [T] [latex]{x}^{3}y^{\prime} +2{x}^{2}y=x+1[/latex]

Solve the following initial-value problems by using integrating factors.

34, [latex]y^{\prime} +y=x,y\left(0\right)=3[/latex]

35. [latex]y^{\prime} =y+2{x}^{2},y\left(0\right)=0[/latex]

36. [latex]xy^{\prime} =y - 3{x}^{3},y\left(1\right)=0[/latex]

37. [latex]{x}^{2}y^{\prime} =xy-\text{ln}x,y\left(1\right)=1[/latex]

38. [latex]\left(1+{x}^{2}\right)y^{\prime} =y - 1,y\left(0\right)=0[/latex]

39. [latex]xy^{\prime} =y+2x\text{ln}x,y\left(1\right)=5[/latex]

40. [latex]\left(2+x\right)y^{\prime} =y+2+x,y\left(0\right)=0[/latex]

41. [latex]y^{\prime} =xy+2x{e}^{x},y\left(0\right)=2[/latex]

42. [latex]\sqrt{x}y^{\prime} =y+2x,y\left(0\right)=1[/latex]

43. [latex]y^{\prime} =2y+x{e}^{x},y\left(0\right)=-1[/latex]

44. A falling object of mass [latex]m[/latex] can reach terminal velocity when the drag force is proportional to its velocity, with proportionality constant [latex]k[/latex]. Set up the differential equation and solve for the velocity given an initial velocity of [latex]0[/latex].

45. Using your expression from the preceding problem, what is the terminal velocity? (Hint: Examine the limiting behavior; does the velocity approach a value?)

46. [T] Using your equation for terminal velocity, solve for the distance fallen. How long does it take to fall [latex]5000[/latex] meters if the mass is [latex]100[/latex] kilograms, the acceleration due to gravity is [latex]9.8[/latex] m/s2 and the proportionality constant is [latex]4?[/latex]

47. A more accurate way to describe terminal velocity is that the drag force is proportional to the square of velocity, with a proportionality constant [latex]k[/latex]. Set up the differential equation and solve for the velocity.

48. Using your expression from the preceding problem, what is the terminal velocity? (Hint: Examine the limiting behavior: Does the velocity approach a value?)

49. [T] Using your equation for terminal velocity, solve for the distance fallen. How long does it take to fall [latex]5000[/latex] meters if the mass is [latex]100[/latex] kilograms, the acceleration due to gravity is [latex]9.8{\text{m/s}}^{2}[/latex] and the proportionality constant is [latex]4?[/latex] Does it take more or less time than your initial estimate?

For the following problems, determine how parameter [latex]a[/latex] affects the solution.

50. Solve the generic equation [latex]y^{\prime} =ax+y[/latex]. How does varying [latex]a[/latex] change the behavior?

51. Solve the generic equation [latex]y^{\prime} =ay+x[/latex]. How does varying [latex]a[/latex] change the behavior?

52. Solve the generic equation [latex]y^{\prime} =ax+xy[/latex]. How does varying [latex]a[/latex] change the behavior?

53. Solve the generic equation [latex]y^{\prime} =x+axy[/latex]. How does varying [latex]a[/latex] change the behavior?

54. Solve [latex]y^{\prime} -y={e}^{kt}[/latex] with the initial condition [latex]y\left(0\right)=0[/latex]. As [latex]k[/latex] approaches [latex]1[/latex], what happens to your formula?