Problem Set: Integration by Parts

In using the technique of integration by parts, you must carefully choose which expression is u. For each of the following problems, use the guidelines in this section to choose u. Do not evaluate the integrals.

1.  x3e2xdxx3e2xdx

2. x3ln(x)dxx3ln(x)dx

3. y3cosydyy3cosydy

4. x2arctanxdxx2arctanxdx

5. e3xsin(2x)dxe3xsin(2x)dx

Find the integral by using the simplest method. Not all problems require integration by parts.

6. vsinvdvvsinvdv

7. lnxdxlnxdx (Hint: lnxdxlnxdx is equivalent to 1ln(x)dx.1ln(x)dx.)

8. xcosxdxxcosxdx

9. tan1xdxtan1xdx

10. x2exdxx2exdx

11. xsin(2x)dxxsin(2x)dx

12. xe4xdxxe4xdx

13. xe-xdxxe-xdx

14. xcos3xdxxcos3xdx

15. x2cosxdxx2cosxdx

16. xlnxdxxlnxdx

17. ln(2x+1)dxln(2x+1)dx

18. x2e4xdxx2e4xdx

19. exsinxdxexsinxdx

20. excosxdxexcosxdx

21. xe-x2dxxe-x2dx

22. x2e-xdxx2e-xdx

23. sin(ln(2x))dxsin(ln(2x))dx

24. cos(lnx)dxcos(lnx)dx

25. (lnx)2dx(lnx)2dx

26. ln(x2)dxln(x2)dx

27. x2lnxdxx2lnxdx

28. sin1xdxsin1xdx

29. cos1(2x)dxcos1(2x)dx

30. xarctanxdxxarctanxdx

31. x2sinxdxx2sinxdx

32. x3cosxdxx3cosxdx

33. x3sinxdxx3sinxdx

34. x3exdxx3exdx

35. xsec1xdxxsec1xdx

36. xsec2xdxxsec2xdx

37. xcoshxdxxcoshxdx

Compute the definite integrals. Use a graphing utility to confirm your answers.

38. 11elnxdx11elnxdx

39. 10xe2xdx10xe2xdx (Express the answer in exact form.)

40. 10exdx(letu=x)10exdx(letu=x)

41. e1ln(x2)dxe1ln(x2)dx

42. π0xcosxdxπ0xcosxdx

43. π-πxsinxdxπ-πxsinxdx (Express the answer in exact form.)

44. 30ln(x2+1)dx30ln(x2+1)dx (Express the answer in exact form.)

45. π20x2sinxdxπ20x2sinxdx (Express the answer in exact form.)

46. 10x5xdx (Express the answer using five significant digits.)

47. Evaluate cosxln(sinx)dx

Derive the following formulas using the technique of integration by parts. Assume that n is a positive integer. These formulas are called reduction formulas because the exponent in the x term has been reduced by one in each case. The second integral is simpler than the original integral.

48. xnexdx=xnexnxn1exdx

49. xncosxdx=xnsinxnxn1sinxdx

50. xnsinxdx=______

51. Integrate 2x2x3dx using two methods:

  1. Using parts, letting dv=2x3dx
  2. Substitution, letting u=2x3

State whether you would use integration by parts to evaluate the integral. If so, identify u and dv. If not, describe the technique used to perform the integration without actually doing the problem.

52. xlnxdx

53. ln2xxdx

54. xexdx

55. xex23dx

56. x2sinxdx

57. x2sin(3x3+2)dx

Sketch the region bounded above by the curve, the x-axis, and x=1, and find the area of the region. Provide the exact form or round answers to the number of places indicated.

58. y=2xe-x (Approximate answer to four decimal places.)

59. y=e-xsin(πx) (Approximate answer to five decimal places.)

Find the volume generated by rotating the region bounded by the given curves about the specified line. Express the answers in exact form or approximate to the number of decimal places indicated.

60. y=sinx,y=0,x=2π,x=3π about the y-axis (Express the answer in exact form.)

61. y=e-x y=0,x=1x=0; about x=1 (Express the answer in exact form.)

62. A particle moving along a straight line has a velocity of v(t)=t2e-t after t sec. How far does it travel in the first 2 sec? (Assume the units are in feet and express the answer in exact form.)

63. Find the area under the graph of y=sec3x from x=0tox=1. (Round the answer to two significant digits.)

64. Find the area between y=(x2)ex and the x-axis from x=2 to x=5. (Express the answer in exact form.)

65. Find the area of the region enclosed by the curve y=xcosx and the x-axis for

11π2x13π2. (Express the answer in exact form.)

66. Find the volume of the solid generated by revolving the region bounded by the curve y=lnx, the x-axis, and the vertical line x=e2 about the x-axis. (Express the answer in exact form.)

67. Find the volume of the solid generated by revolving the region bounded by the curve y=4cosx and the x-axis, π2x3π2, about the x-axis. (Express the answer in exact form.)

68. Find the volume of the solid generated by revolving the region in the first quadrant bounded by y=ex and the x-axis, from x=0 to x=ln(7), about the y-axis. (Express the answer in exact form.)