For the following exercises, sketch the curves below by eliminating the parameter t. Give the orientation of the curve.
1. x=t2+2tx=t2+2t, y=t+1y=t+1
3. x=2t+4,y=t−1x=2t+4,y=t−1
For the following exercises, eliminate the parameter and sketch the graphs.
5. x=2t2,y=t4+1x=2t2,y=t4+1
For the following exercises, use technology (CAS or calculator) to sketch the parametric equations.
7. [T] x=e-t,y=e2t−1x=e-t,y=e2t−1
9. [T] x=sect,y=costx=sect,y=cost
For the following exercises, sketch the parametric equations by eliminating the parameter. Indicate any asymptotes of the graph.
11. x=6sin(2θ),y=4cos(2θ)x=6sin(2θ),y=4cos(2θ)
13. x=3−2cosθ,y=−5+3sinθx=3−2cosθ,y=−5+3sinθ
15. x=sect,y=tantx=sect,y=tant
17. x=et,y=e2tx=et,y=e2t
19. x=t3,y=3lntx=t3,y=3lnt
For the following exercises, convert the parametric equations of a curve into rectangular form. No sketch is necessary. State the domain of the rectangular form.
21. x=t2−1,y=t2x=t2−1,y=t2
23. x=4cosθ,y=3sinθ,t∈(0,2π]x=4cosθ,y=3sinθ,t∈(0,2π]
25. x=2t−3,y=6t−7x=2t−3,y=6t−7
27. x=1+cost,y=3−sintx=1+cost,y=3−sint
29. x=sect,y=tant,π≤t<3π2x=sect,y=tant,π≤t<3π2
31. x=cos(2t),y=sintx=cos(2t),y=sint
32. x=4t+3,y=16t2−9x=4t+3,y=16t2−9
33. x=t2,y=2lnt,t≥1x=t2,y=2lnt,t≥1
35. x=tn,y=nlnt,t≥1,x=tn,y=nlnt,t≥1, where n is a natural number
37. x=2sin(8t)y=2cos(8t)x=2sin(8t)y=2cos(8t)
For the following exercises, the pairs of parametric equations represent lines, parabolas, circles, ellipses, or hyperbolas. Name the type of basic curve that each pair of equations represents.
39. x=3t+4y=5t−2x=3t+4y=5t−2
41. x=2t+1y=t2−3x=2t+1y=t2−3
43. x=2cos(3t)y=2sin(3t)x=2cos(3t)y=2sin(3t)
45. x=3costy=4sintx=3costy=4sint
47. x=3cosh(4t)y=4sinh(4t)x=3cosh(4t)y=4sinh(4t)
48. x=2coshty=2sinhtx=2coshty=2sinht
For the following exercises, use a graphing utility to graph the curve represented by the parametric equations and identify the curve from its equation.
51. [T] x=θ+sinθy=1−cosθx=θ+sinθy=1−cosθ
53. [T] x=t−0.5sinty=1−1.5costx=t−0.5sinty=1−1.5cost
55. The trajectory of a bullet is given by x=v0(cosα)ty=v0(sinα)t−12gt2x=v0(cosα)ty=v0(sinα)t−12gt2 where v0=500m/s,v0=500m/s, g=9.8=9.8m/s2g=9.8=9.8m/s2, and α=30 degreesα=30 degrees. When will the bullet hit the ground? How far from the gun will the bullet hit the ground?
57. [T] Use technology to sketch [latex]x=2\tan\left(t\right),y=3\sec\left(t\right),\text{-}\pi
x=(a+b)cost−c⋅cos[(a+b)tb]y=(a+b)sint−c⋅sin[(a+b)tb].x=(a+b)cost−c⋅cos[(a+b)tb]y=(a+b)sint−c⋅sin[(a+b)tb].
Let a=1,b=2,c=1.
59. [T] Use technology to sketch the spiral curve given by x=tcos(t),y=tsin(t) from −2π≤t≤2π.
61. [T] Sketch the curve given by parametric equations x=cosh(t)y=sinh(t), where −2≤t≤2.
Candela Citations
- Calculus Volume 2. Authored by: Gilbert Strang, Edwin (Jed) Herman. Provided by: OpenStax. Located at: https://openstax.org/books/calculus-volume-2/pages/1-introduction. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike. License Terms: Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction