Problem Set: Power Series and Functions

In the following exercises, state whether each statement is true, or give an example to show that it is false.

1. If n=1anxnn=1anxn converges, then anxn0anxn0 as nn.

2. n=1anxnn=1anxn converges at x=0x=0 for any real numbers anan.

3. Given any sequence anan, there is always some R>0R>0, possibly very small, such that n=1anxnn=1anxn converges on (-R,R)(-R,R).

4. If n=1anxnn=1anxn has radius of convergence R>0R>0 and if |bn||an||bn||an| for all n, then the radius of convergence of n=1bnxnn=1bnxn is greater than or equal to R.

5. Suppose that n=0an(x3)nn=0an(x3)n converges at x=6x=6. At which of the following points must the series also converge? Use the fact that if an(xc)nan(xc)n converges at x, then it converges at any point closer to c than x.

  1. x=1x=1
  2. x=2x=2
  3. x=3x=3
  4. x=0x=0
  5. x=5.99x=5.99
  6. x=0.000001x=0.000001

6. Suppose that n=0an(x+1)nn=0an(x+1)n converges at x=2x=2.
At which of the following points must the series also converge? Use the fact that if an(xc)nan(xc)n converges at x, then it converges at any point closer to c than x.

  1. x=2x=2
  2. x=1x=1
  3. x=3x=3
  4. x=0x=0
  5. x=0.99x=0.99
  6. x=0.000001x=0.000001

In the following exercises, suppose that |an+1an|1|an+1an|1 as nn. Find the radius of convergence for each series.

7. n=0an2nxnn=0an2nxn

8. n=0anxn2nn=0anxn2n

9. n=0anπnxnenn=0anπnxnen

10. n=0an(1)nxn10nn=0an(1)nxn10n

11. n=0an(1)nx2nn=0an(1)nx2n

12. n=0an(4)nx2nn=0an(4)nx2n

In the following exercises, find the radius of convergence R and interval of convergence for anxnanxn with the given coefficients anan.

13. n=1(2x)nnn=1(2x)nn

14. n=1(1)nxnnn=1(1)nxnn

15. n=1nxn2nn=1nxn2n

16. n=1nxnenn=1nxnen

17. n=1n2xn2nn=1n2xn2n

18. k=1kexkekk=1kexkek

19. k=1πkxkkπk=1πkxkkπ

20. n=1xnn!n=1xnn!

21. n=110nxnn!

22. n=1(1)nxnln(2n)

In the following exercises, find the radius of convergence of each series.

23. k=1(k!)2xk(2k)!

24. n=1(2n)!xnn2n

25. k=1k!135 (2k1)xk

26. k=1246 2k(2k)!xk

27. n=1xn(2nn) where (nk)=n!k!(nk)!

28. n=1sin2nxn

In the following exercises, use the ratio test to determine the radius of convergence of each series.

29. n=1(n!)3(3n)!xn

30. n=123n(n!)3(3n)!xn

31. n=1n!nnxn

32. n=1(2n)!n2nxn

In the following exercises, given that 11x=n=0xn with convergence in (1,1), find the power series for each function with the given center a, and identify its interval of convergence.

33. f(x)=1x;a=1 (Hint: 1x=11(1x))

34. f(x)=11x2;a=0

35. f(x)=x1x2;a=0

36. f(x)=11+x2;a=0

37. f(x)=x21+x2;a=0

38. f(x)=12x;a=1

39. f(x)=112x;a=0.

40. f(x)=114x2;a=0

41. f(x)=x214x2;a=0

42. f(x)=x254x+x2;a=2

Use the next exercise to find the radius of convergence of the given series in the subsequent exercises.

43. Explain why, if |an|1nr>0, then |anxn|1n|x|r<1 whenever |x|<1r and, therefore, the radius of convergence of n=1anxn is R=1r.

44. n=1xnnn

45. k=1(k12k+3)kxk

46. k=1(2k21k2+3)kxk

47. n=1an=(n1n1)nxn

48. Suppose that p(x)=n=0anxn such that an=0 if n is odd. Explain why p(x)=p(-x).

49. Suppose that p(x)=n=0anxn such that an=0 if n is even. Explain why p(x)=p(-x).

50. Suppose that p(x)=n=0anxn converges on (1,1].
Find the interval of convergence of p(Ax).

51. Suppose that p(x)=n=0anxn converges on (1,1]. Find the interval of convergence of p(2x1).

In the following exercises, suppose that p(x)=n=0anxn satisfies limnan+1an=1 where an0 for each n. State whether each series converges on the full interval (1,1), or if there is not enough information to draw a conclusion. Use the comparison test when appropriate.

52. n=0anx2n

53. n=0a2nx2n

54. n=0a2nxn(Hint:x=±x2)

55. n=0an2xn2 (Hint: Let bk=ak if k=n2 for some n, otherwise bk=0.)

56. Suppose that p(x) is a polynomial of degree N. Find the radius and interval of convergence of n=1p(n)xn.

57. [T] Plot the graphs of 11x and of the partial sums SN=Nn=0xn for n=10,20,30 on the interval [0.99,0.99]. Comment on the approximation of 11x by SN near x=1 and near x=1 as N increases.

58. [T] Plot the graphs of -ln(1x) and of the partial sums SN=Nn=1xnn for n=10,50,100 on the interval [0.99,0.99]. Comment on the behavior of the sums near x=1 and near x=1 as N increases.

59. [T] Plot the graphs of the partial sums Sn=Nn=1xnn2 for n=10,50,100 on the interval [0.99,0.99]. Comment on the behavior of the sums near x=1 and near x=1 as N increases.

60. [T] Plot the graphs of the partial sums SN=Nn=1sinnxn for n=10,50,100 on the interval [0.99,0.99]. Comment on the behavior of the sums near x=1 and near x=1 as N increases.

61. [T] Plot the graphs of the partial sums SN=Nn=0(1)nx2n+1(2n+1)! for n=3,5,10 on the interval [2π,2π]. Comment on how these plots approximate sinx as N increases.

62. [T] Plot the graphs of the partial sums SN=Nn=0(1)nx2n(2n)! for n=3,5,10 on the interval [2π,2π]. Comment on how these plots approximate cosx as N increases.