Problem Set: Ratio and Root Tests

Use the ratio test to determine whether n=1an converges, where an is given in the following problems. State if the ratio test is inconclusive.

1. an=1n!

2. an=10nn!

3. an=n22n

4. an=n102n

5. n=1(n!)3(3n)!

6. n=123n(n!)3(3n)!

7. n=1(2n)!n2n

8. n=1(2n)!(2n)n

9. n=1n!(ne)n

10. n=1(2n)!(ne)2n

11. n=1(2nn!)2(2n)2n

Use the root test to determine whether n=1an converges, where an is as follows.

12. ak=(k12k+3)k

13. ak=(2k21k2+3)k

14. an=(lnn)2nnn

15. an=n2n

16. an=nen

17. ak=keek

18. ak=πkkπ

19. an=(1e+1n)n

20. ak=1(1+lnk)k

21. an=(ln(1+lnn))n(lnn)n

In the following exercises, use either the ratio test or the root test as appropriate to determine whether the series k=1ak with given terms ak converges, or state if the test is inconclusive.

22. ak=k!135 (2k1)

23. ak=246 2k(2k)!

24. ak=147 (3k2)3kk!

25. an=(11n)n2

26. ak=(1k+1+1k+2+ +12k)k (Hint: Compare ak1k to k2kdtt.)

27. ak=(1k+1+1k+2+ +13k)k

28. an=(n1n1)n

Use the ratio test to determine whether n=1an converges, or state if the ratio test is inconclusive.

29. n=13n22n3

30. n=12n2nnn!

Use the root and limit comparison tests to determine whether n=1an converges.

31. an=1xnn where xn+1=12xn+1xn, x1=1 (Hint: Find limit of {xn}.)

In the following exercises, use an appropriate test to determine whether the series converges.

32. n=1(n+1)n3+n2+n+1

33. n=1(1)n+1(n+1)n3+3n2+3n+1

34. n=1(n+1)2n3+(1.1)n

35. n=1(n1)n(n+1)n

36. an=(1+1n2)n (Hint: (1+1n2)n2e.)

37. ak=12sin2k

38. ak=2-sin(1k)

39. an=1(n+2n) where (nk)=n!k!(nk)!

40. ak=1(2kk)

41. ak=2k(3kk)

42. ak=(kk+lnk)k (Hint: ak=(1+lnkk)-(klnk)lnke-lnk.)

43. ak=(kk+lnk)2k (Hint: ak=(1+lnkk)-(klnk)lnk2.)

The following series converge by the ratio test. Use summation by parts, k=1nak(bk+1bk)=[an+1bn+1a1b1]k=1nbk+1(ak+1ak), to find the sum of the given series.

44. k=1k2k (Hint: Take ak=k and bk=21k.)

45. k=1kck, where c>1 (Hint: Take ak=k and bk=c1k(c1).)

46. n=1n22n

47. n=1(n+1)22n

The kth term of each of the following series has a factor xk. Find the range of x for which the ratio test implies that the series converges.

48. k=1xkk2

49. k=1x2kk2

50. k=1x2k3k

51. k=1xkk!

52. Does there exist a number p such that n=12nnp converges?

53. Let [latex]0

54. Suppose that limn|an+1an|=p. For which values of p must n=12nan converge?

55. Suppose that limn|an+1an|=p. For which values of r>0 is n=1rnan guaranteed to converge?

56. Suppose that |an+1an|(n+1)p for all n=1,2,  where p is a fixed real number. For which values of p is n=1n!an guaranteed to converge?

57. For which values of r>0, if any, does n=1rn converge? (Hint: n=1an=k=1n=k2(k+1)21an.)

58. Suppose that |an+2an|r<1 for all n. Can you conclude that n=1an converges?

59. Let an=2-[n2] where [x] is the greatest integer less than or equal to x. Determine whether n=1an converges and justify your answer.

The following advanced exercises use a generalized ratio test to determine convergence of some series that arise in particular applications when tests in this chapter, including the ratio and root test, are not powerful enough to determine their convergence. The test states that if limna2nan<12, then an converges, while if limna2n+1an>12, then an diverges.

60. Let an=143658 2n12n+2=135(2n1)2n(n+1)!. Explain why the ratio test cannot determine convergence of n=1an. Use the fact that 11(4k) is increasing k to estimate limna2nan.

61. Let an=11+x22+x nn+x1n=(n1)!(1+x)(2+x) (n+x). Show that a2nane-x22. For which x>0 does the generalized ratio test imply convergence of n=1an? (Hint: Write 2a2nan as a product of n factors each smaller than 1(1+x(2n)).)

62. Let an=nlnn(lnn)n. Show that a2nan0 as n.