Skills Review for Green’s Theorem, Divergence and Curl, and Surface Integrals

Learning Outcomes

  • Apply basic derivative rules
  • Apply the chain rule together with the power and product rule
  • Find the general antiderivative of a given function

In the section about Green’s Theorem, we will learn how Green’s Theorem is an extension of the Fundamental Theorem of Calculus to two dimensions. Then,  we will learn about divergence and curl, two important operations on vector fields. Lastly, we will explore how to integrate over a surface. Here we will review basic differentiation techniques and basic integration techniques.

Basic Derivative Rules

(See Module 6, Skills Review for Line Integrals and Conservative Vector Fields)

The Chain Rule

(See Module 6, Skills Review for Line Integrals and Conservative Vector Fields)

Apply Basic Integration Techniques

(also in Module 5, Skills Review for Double and Triple Integrals)

Indefinite Integrals

Definition


Given a function [latex]f[/latex], the indefinite integral of [latex]f[/latex], denoted

[latex]\displaystyle\int f(x) dx[/latex],

is the most general antiderivative of [latex]f[/latex]. If [latex]F[/latex] is an antiderivative of [latex]f[/latex], then

[latex]\displaystyle\int f(x) dx=F(x)+C[/latex]

The expression [latex]f(x)[/latex] is called the integrand and the variable [latex]x[/latex] is the variable of integration.

Power Rule for Integrals


For [latex]n \ne −1[/latex],

[latex]\displaystyle\int x^n dx=\dfrac{x^{n+1}}{n+1}+C[/latex]

 

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite integrals for several common functions. A more complete list appears in Appendix B: Table of Derivatives.

Integration Formulas
Differentiation Formula Indefinite Integral
[latex]\frac{d}{dx}(k)=0[/latex] [latex]\displaystyle\int kdx=\displaystyle\int kx^0 dx=kx+C[/latex]
[latex]\frac{d}{dx}(x^n)=nx^{n-1}[/latex] [latex]\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}+C[/latex] for [latex]n\ne −1[/latex]
[latex]\frac{d}{dx}(\ln |x|)=\frac{1}{x}[/latex] [latex]\displaystyle\int \frac{1}{x}dx=\ln |x|+C[/latex]
[latex]\frac{d}{dx}(e^x)=e^x[/latex] [latex]\displaystyle\int e^x dx=e^x+C[/latex]
[latex]\frac{d}{dx}(\sin x)= \cos x[/latex] [latex]\displaystyle\int \cos x dx= \sin x+C[/latex]
[latex]\frac{d}{dx}(\cos x)=− \sin x[/latex] [latex]\displaystyle\int \sin x dx=− \cos x+C[/latex]
[latex]\frac{d}{dx}(\tan x)= \sec^2 x[/latex] [latex]\displaystyle\int \sec^2 x dx= \tan x+C[/latex]
[latex]\frac{d}{dx}(\csc x)=−\csc x \cot x[/latex] [latex]\displaystyle\int \csc x \cot x dx=−\csc x+C[/latex]
[latex]\frac{d}{dx}(\sec x)= \sec x \tan x[/latex] [latex]\displaystyle\int \sec x \tan x dx= \sec x+C[/latex]
[latex]\frac{d}{dx}(\cot x)=−\csc^2 x[/latex] [latex]\displaystyle\int \csc^2 x dx=−\cot x+C[/latex]
[latex]\frac{d}{dx}( \sin^{-1} x)=\frac{1}{\sqrt{1-x^2}}[/latex] [latex]\displaystyle\int \frac{1}{\sqrt{1-x^2}} dx= \sin^{-1} x+C[/latex]
[latex]\frac{d}{dx}(\tan^{-1} x)=\frac{1}{1+x^2}[/latex] [latex]\displaystyle\int \frac{1}{1+x^2} dx= \tan^{-1} x+C[/latex]
[latex]\frac{d}{dx}(\sec^{-1} |x|)=\frac{1}{x\sqrt{x^2-1}}[/latex] [latex]\displaystyle\int \frac{1}{x\sqrt{x^2-1}} dx= \sec^{-1} |x|+C[/latex]

Properties of Indefinite Integrals


Let [latex]F[/latex] and [latex]G[/latex] be antiderivatives of [latex]f[/latex] and [latex]g[/latex], respectively, and let [latex]k[/latex] be any real number.

 

Sums and Differences

[latex]\displaystyle\int (f(x) \pm g(x)) dx=F(x) \pm G(x)+C[/latex]

 

Constant Multiples

[latex]\displaystyle\int kf(x) dx=kF(x)+C[/latex]

Example: Evaluating Indefinite Integrals

Evaluate each of the following indefinite integrals:

  1. [latex]\displaystyle\int (5x^3-7x^2+3x+4) dx[/latex]
  2. [latex]\displaystyle\int \frac{x^2+4\sqrt[3]{x}}{x} dx[/latex]
  3. [latex]\displaystyle\int \frac{4}{1+x^2} dx[/latex]
  4. [latex]\displaystyle\int \tan x \cos x dx[/latex]

Try It

Evaluate [latex]\displaystyle\int (4x^3-5x^2+x-7) dx[/latex]

Try It