4.2 Section Exercises

4.2 Section Exercises

Verbal

1. What is the difference between an[latex]\text{ }x\text{-}[/latex]intercept and a zero of a polynomial function[latex]\text{ }f?\text{ }[/latex]

2. If a polynomial function of degree[latex]\text{ }n\text{ }[/latex] has[latex]\text{ }n\text{ }[/latex] distinct zeros, what do you know about the graph of the function?

3. Explain how the Intermediate Value Theorem can assist us in finding a zero of a function.

4. Explain how the factored form of the polynomial helps us in graphing it.

5. If the graph of a polynomial just touches the[latex]\text{ }x\text{-}[/latex]axis and then changes direction, what can we conclude about the factored form of the polynomial?

Algebraic

For the following exercises, find the[latex]\text{ }x\text{-}[/latex] or t-intercepts of the polynomial functions.

6. [latex]\text{ }C\left(t\right)=2\left(t-4\right)\left(t+1\right)\left(t-6\right)[/latex]

7. [latex]\text{ }C\left(t\right)=3\left(t+2\right)\left(t-3\right)\left(t+5\right)[/latex]

8. [latex]\text{ }C\left(t\right)=4t{\left(t-2\right)}^{2}\left(t+1\right)[/latex]

9. [latex]\text{ }C\left(t\right)=2t\left(t-3\right){\left(t+1\right)}^{2}[/latex]

10. [latex]\text{ }C\left(t\right)=2{t}^{4}-8{t}^{3}+6{t}^{2}[/latex]

11. [latex]\text{ }C\left(t\right)=4{t}^{4}+12{t}^{3}-40{t}^{2}[/latex]

12. [latex]\text{ }f\left(x\right)={x}^{4}-{x}^{2}[/latex]

13. [latex]\text{ }f\left(x\right)={x}^{3}+{x}^{2}-20x[/latex]

14. [latex]f\left(x\right)={x}^{3}+6{x}^{2}-7x[/latex]

15. [latex]f\left(x\right)={x}^{3}+{x}^{2}-4x-4[/latex]

16. [latex]f\left(x\right)={x}^{3}+2{x}^{2}-9x-18[/latex]

17. [latex]f\left(x\right)=2{x}^{3}-{x}^{2}-8x+4[/latex]

18. [latex]f\left(x\right)={x}^{6}-7{x}^{3}-8[/latex]

19. [latex]f\left(x\right)=2{x}^{4}+6{x}^{2}-8[/latex]

20. [latex]f\left(x\right)={x}^{3}-3{x}^{2}-x+3[/latex]

21. [latex]f\left(x\right)={x}^{6}-2{x}^{4}-3{x}^{2}[/latex]

22. [latex]f\left(x\right)={x}^{6}-3{x}^{4}-4{x}^{2}[/latex]

23. [latex]f\left(x\right)={x}^{5}-5{x}^{3}+4x[/latex]

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one zero within the given interval.

24. [latex]f\left(x\right)={x}^{3}-9x,\text{ }[/latex] between[latex]\text{ }x=-4\text{ }[/latex] and[latex]\text{ }x=-2.[/latex]

25. [latex]f\left(x\right)={x}^{3}-9x,\text{ }[/latex] between[latex]\text{ }x=2\text{ }[/latex] and[latex]\text{ }x=4.[/latex]

26. [latex]f\left(x\right)={x}^{5}-2x,\text{ }[/latex] between[latex]\text{ }x=1\text{ }[/latex] and[latex]\text{ }x=2.[/latex]

27. [latex]f\left(x\right)=-{x}^{4}+4,\text{ }[/latex] between[latex]\text{ }x=1\text{ }[/latex] and[latex]\text{ }x=3[/latex] .

28. [latex]f\left(x\right)=-2{x}^{3}-x,\text{ }[/latex] between[latex]\text{ }x=–1\text{ }[/latex] and[latex]\text{ }x=1.[/latex]

29. [latex]f\left(x\right)={x}^{3}-100x+2,\text{ }[/latex] between[latex]\text{ }x=0.01\text{ }[/latex] and[latex]\text{ }x=0.1[/latex]

For the following exercises, find the zeros and give the multiplicity of each.

30. [latex]f\left(x\right)={\left(x+2\right)}^{3}{\left(x-3\right)}^{2}[/latex]

31. [latex]f\left(x\right)={x}^{2}{\left(2x+3\right)}^{5}{\left(x-4\right)}^{2}[/latex]

32. [latex]f\left(x\right)={x}^{3}{\left(x-1\right)}^{3}\left(x+2\right)[/latex]

33. [latex]f\left(x\right)={x}^{2}\left({x}^{2}+4x+4\right)[/latex]

34. [latex]f\left(x\right)={\left(2x+1\right)}^{3}\left(9{x}^{2}-6x+1\right)[/latex]

35. [latex]f\left(x\right)={\left(3x+2\right)}^{5}\left({x}^{2}-10x+25\right)[/latex]

36. [latex]f\left(x\right)=x\left(4{x}^{2}-12x+9\right)\left({x}^{2}+8x+16\right)[/latex]

37. [latex]f\left(x\right)={x}^{6}-{x}^{5}-2{x}^{4}[/latex]

38. [latex]f\left(x\right)=3{x}^{4}+6{x}^{3}+3{x}^{2}[/latex]

39. [latex]f\left(x\right)=4{x}^{5}-12{x}^{4}+9{x}^{3}[/latex]

40. [latex]f\left(x\right)=2{x}^{4}\left({x}^{3}-4{x}^{2}+4x\right)[/latex]

41. [latex]f\left(x\right)=4{x}^{4}\left(9{x}^{4}-12{x}^{3}+4{x}^{2}\right)[/latex]

42. [latex]\text{0}\text{ }\text{with}\text{ }\text{multiplicity}\text{ }6\text{,}\text{ }\frac{2}{3}\text{ }\text{with}\text{ }\text{multiplicity}\text{ }2[/latex]

Graphical

For the following exercises, graph the polynomial functions. Note[latex]\text{ }x\text{-}[/latex] and[latex]\text{ }y\text{-}[/latex]intercepts, multiplicity, and end behavior.

43. [latex]f\left(x\right)={\left(x+3\right)}^{2}\left(x-2\right)[/latex]

44. [latex]g\left(x\right)=\left(x+4\right){\left(x-1\right)}^{2}[/latex]

45. [latex]h\left(x\right)={\left(x-1\right)}^{3}{\left(x+3\right)}^{2}[/latex]

46. [latex]k\left(x\right)={\left(x-3\right)}^{3}{\left(x-2\right)}^{2}[/latex]

47. [latex]m\left(x\right)=-2x\left(x-1\right)\left(x+3\right)[/latex]

48. [latex]n\left(x\right)=-3x\left(x+2\right)\left(x-4\right)[/latex]

For the following exercises, use the graphs to write the formula for a polynomial function of least degree.

49. Graph of a positive odd-degree polynomial with zeros at x=-2, 1, and 3.
50. Graph of a negative odd-degree polynomial with zeros at x=-3, 1, and 3.

51. Graph of a negative odd-degree polynomial with zeros at x=-1, and 2.
52. Graph of a positive odd-degree polynomial with zeros at x=-2, and 3.

53. Graph of a negative even-degree polynomial with zeros at x=-3, -2, 3, and 4.

For the following exercises, use the graph to identify zeros and multiplicity.

54. Graph of a negative even-degree polynomial with zeros at x=-4, -2, 1, and 3.

55. Graph of a positive even-degree polynomial with zeros at x=-4, -2, and 3.
56. Graph of a positive even-degree polynomial with zeros at x=-2,, and 3.

57. Graph of a negative odd-degree polynomial with zeros at x=-3, -2, and 1.

For the following exercises, use the given information about the polynomial graph to write the equation.

58. Degree 3. Zeros at[latex]\text{ }x=–2,[/latex] [latex]\text{ }x=1,\text{ }[/latex]and[latex]\text{ }x=3.\text{ }[/latex]y-intercept at[latex]\text{ }\left(0,–4\right).[/latex]

59. Degree 3. Zeros at[latex]\text{ }x=\text{–5,}[/latex] [latex]\text{ }x=–2,[/latex]and[latex]\text{ }x=1.\text{ }[/latex]y-intercept at[latex]\text{ }\left(0,6\right)[/latex]

60. Degree 5. Roots of multiplicity 2 at[latex]\text{ }x=3\text{ }[/latex] and[latex]\text{ }x=1\text{ }[/latex] , and a root of multiplicity 1 at[latex]\text{ }x=–3.\text{ }[/latex] y-intercept at[latex]\text{ }\left(0,9\right)[/latex]

61. Degree 4. Root of multiplicity 2 at[latex]\text{ }x=4,\text{ }[/latex]and a roots of multiplicity 1 at[latex]\text{ }x=1\text{ }[/latex]and[latex]\text{ }x=–2.\text{ }[/latex]y-intercept at[latex]\text{ }\left(0,\text{–}3\right).[/latex]

62. Degree 5. Double zero at[latex]\text{ }x=1,\text{ }[/latex]and triple zero at[latex]\text{ }x=3.\text{ }[/latex] Passes through the point[latex]\text{ }\left(2,15\right).[/latex]

63. Degree 3. Zeros at[latex]\text{ }x=4,[/latex][latex]\text{ }x=3,[/latex]and[latex]\text{ }x=2.\text{ }[/latex]y-intercept at[latex]\text{ }\left(0,-24\right).[/latex]

64. Degree 3. Zeros at[latex]\text{ }x=-3,[/latex] [latex]\text{ }x=-2\text{ }[/latex] and[latex]\text{ }x=1.\text{ }[/latex] y-intercept at[latex]\text{ }\left(0,12\right).[/latex]

65. Degree 5. Roots of multiplicity 2 at[latex]\text{ }x=-3\text{ }[/latex] and[latex]\text{ }x=2\text{ }[/latex] and a root of multiplicity 1 at[latex]\text{ }x=-2.[/latex]

y-intercept at[latex]\text{ }\left(0, 4\right).[/latex]

66. Degree 4. Roots of multiplicity 2 at[latex]\text{ }x=\frac{1}{2}\text{ }[/latex]and roots of multiplicity 1 at[latex]\text{ }x=6\text{ }[/latex]and[latex]\text{ }x=-2.[/latex]

y-intercept at[latex]\text{ }\left(0,18\right).[/latex]

67. Double zero at[latex]\text{ }x=-3\text{ }[/latex] and triple zero at[latex]\text{ }x=0.\text{ }[/latex] Passes through the point[latex]\text{ }\left(1,32\right).[/latex]

Technology

For the following exercises, use a calculator to approximate local minima and maxima or the global minimum and maximum.

68. [latex]f\left(x\right)={x}^{3}-x-1[/latex]

69. [latex]f\left(x\right)=2{x}^{3}-3x-1[/latex]

70. [latex]f\left(x\right)={x}^{4}+x[/latex]

71. [latex]f\left(x\right)=-{x}^{4}+3x-2[/latex]

72. [latex]f\left(x\right)={x}^{4}-{x}^{3}+1[/latex]

Extensions

For the following exercises, use the graphs to write a polynomial function of least degree.

73. Graph of a positive odd-degree polynomial with zeros at x=--2/3, and 4/3 and y=8.
74. Graph of a positive odd-degree polynomial with zeros at x=--200, and 500 and y=50000000.

75. Graph of a positive odd-degree polynomial with zeros at x=--300, and 100 and y=-90000.

Real-World Applications

For the following exercises, write the polynomial function that models the given situation.

76. A rectangle has a length of 10 units and a width of 8 units. Squares of[latex]\text{ }x\text{ }[/latex] by[latex]\text{ }x\text{ }[/latex] units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume of the box as a polynomial function in terms of[latex]\text{ }x.[/latex]

77. Consider the same rectangle of the preceding problem. Squares of[latex]\text{ }2x\text{ }[/latex] by[latex]\text{ }2x\text{ }[/latex] units are cut out of each corner. Express the volume of the box as a polynomial in terms of[latex]\text{ }x.[/latex]

78. A square has sides of 12 units. Squares[latex]\text{ }x\text{ }+1\text{ }[/latex] by[latex]\text{ }x\text{ }+1\text{ }[/latex] units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume of the box as a function in terms of[latex]\text{ }x.[/latex]

79. A cylinder has a radius of[latex]\text{ }x+2\text{ }[/latex] units and a height of 3 units greater. Express the volume of the cylinder as a polynomial function.

80. A right circular cone has a radius of[latex]\text{ }3x+6\text{ }[/latex] and a height 3 units less. Express the volume of the cone as a polynomial function. The volume of a cone is[latex]\text{ }V=\frac{1}{3}\pi {r}^{2}h\text{ }[/latex] for radius[latex]\text{ }r\text{ }[/latex] and height[latex]\text{ }h.[/latex]