Putting It Together: Metabolic Pathways

Whether the organism is a bacterium, plant, or animal, all living things access energy by breaking down carbohydrate molecules. But if plants make carbohydrate molecules, why would they need to break them down, especially when it has been shown that the gas organisms release as a “waste product” (CO2) acts as a substrate for the formation of more food in photosynthesis? Remember, living things need energy to perform life functions. In addition, an organism can either make its own food or eat another organism—either way, the food still needs to be converted to a form cells can actually use. Finally, in that process of conversion, called cellular respiration, organisms release needed energy and produce “waste” in the form of CO2 gas.

This photograph shows a giraffe eating leaves from a tree. Labels indicate that the giraffe consumes oxygen and releases carbon dioxide, whereas the tree consumes carbon dioxide and releases oxygen.

Figure 1. Photosynthesis consumes carbon dioxide and produces oxygen. Aerobic respiration consumes oxygen and produces carbon dioxide. These two processes play an important role in the carbon cycle. (credit: modification of work by Stuart Bassil)

In nature, there is no such thing as waste. Every single atom of matter and energy is conserved, recycling over and over infinitely. Substances change form or move from one type of molecule to another, but their constituent atoms never disappear (Figure 1).

While you may be tempted to call CO2 a waste product, you should remember that oxygen is a “waste product” of photosynthesis: CO2 and oxygen are byproducts of reactions that move on to other reactions. Photosynthesis absorbs light energy to build carbohydrates in chloroplasts, and aerobic cellular respiration releases energy by using oxygen to metabolize carbohydrates in the cytoplasm and mitochondria. Both processes use electron transport chains to capture the energy necessary to drive other reactions. These two powerhouse processes, photosynthesis and cellular respiration, function in biological, cyclical harmony to allow organisms to access life-sustaining energy that originates millions of miles away in a burning star humans call the sun.


Obviously its important for providing energy for living organisms to power themselves. But is that the only power that photosynthesis provides? What about biofuels? Watch this 14 minute video for an amazing discussion of a proposed biofuel source that doesn’t use arable land, doesn’t take away food crops, and utilizes wastewater from cities.


Did you have an idea for improving this content? We’d love your input.

Improve this pageLearn More