Endocytosis

Learning Outcomes

  • Describe endocytosis and identify different varieties of import, including phagocytosis, pinocytosis, and receptor mediated endocytosis

Endocytosis is a type of active transport that moves particles, such as large molecules, parts of cells, and even whole cells, into a cell. There are different variations of endocytosis, but all share a common characteristic: the plasma membrane of the cell invaginates, forming a pocket around the target particle. The pocket pinches off, resulting in the particle being contained in a newly created intracellular vesicle formed from the plasma membrane.

Phagocytosis

This illustration shows a plasma membrane forming a pocket around a particle in the extracellular fluid. The membrane subsequently engulfs the particle, which becomes trapped in a vacuole.

Figure 1. In phagocytosis, the cell membrane surrounds the particle and engulfs it.

Phagocytosis (the condition of “cell eating”) is the process by which large particles, such as cells or relatively large particles, are taken in by a cell. For example, when microorganisms invade the human body, a type of white blood cell called a neutrophil will remove the invaders through this process, surrounding and engulfing the microorganism, which is then destroyed by the neutrophil (Figure 1).

In preparation for phagocytosis, a portion of the inward-facing surface of the plasma membrane becomes coated with a protein called clathrin, which stabilizes this section of the membrane. The coated portion of the membrane then extends from the body of the cell and surrounds the particle, eventually enclosing it. Once the vesicle containing the particle is enclosed within the cell, the clathrin disengages from the membrane and the vesicle merges with a lysosome for the breakdown of the material in the newly formed compartment (endosome). When accessible nutrients from the degradation of the vesicular contents have been extracted, the newly formed endosome merges with the plasma membrane and releases its contents into the extracellular fluid. The endosomal membrane again becomes part of the plasma membrane.

 

Pinocytosis

This illustration shows a plasma membrane forming a pocket around fluid in the extracellular fluid. The membrane subsequently engulfs the fluid, which becomes trapped in a vacuole.

Figure 2. In pinocytosis, the cell membrane invaginates, surrounds a small volume of fluid, and pinches off.

A variation of endocytosis is called pinocytosis. This literally means “cell drinking” and was named at a time when the assumption was that the cell was purposefully taking in extracellular fluid. In reality, this is a process that takes in molecules, including water, which the cell needs from the extracellular fluid. Pinocytosis results in a much smaller vesicle than does phagocytosis, and the vesicle does not need to merge with a lysosome (Figure 2).

A variation of pinocytosis is called potocytosis. This process uses a coating protein, called caveolin, on the cytoplasmic side of the plasma membrane, which performs a similar function to clathrin. The cavities in the plasma membrane that form the vacuoles have membrane receptors and lipid rafts in addition to caveolin.

The vacuoles or vesicles formed in caveolae (singular caveola) are smaller than those in pinocytosis. Potocytosis is used to bring small molecules into the cell and to transport these molecules through the cell for their release on the other side of the cell, a process called transcytosis.

 

Receptor-Mediated Endocytosis

This illustration shows a part of the plasma membrane that is clathrin-coated on the cytoplasmic side and has receptors on the extracellular side. The receptors bind a substance, then pinch off to form a vesicle.

Figure 3. In receptor-mediated endocytosis, the cell’s uptake of substances targets a single type of substance that binds to the receptor on the cell membrane’s external surface.

A targeted variation of endocytosis employs receptor proteins in the plasma membrane that have a specific binding affinity for certain substances (Figure 3).

In receptor-mediated endocytosis, as in phagocytosis, clathrin is attached to the cytoplasmic side of the plasma membrane. If uptake of a compound is dependent on receptor-mediated endocytosis and the process is ineffective, the material will not be removed from the tissue fluids or blood. Instead, it will stay in those fluids and increase in concentration.

Some human diseases are caused by the failure of receptor-mediated endocytosis. For example, the form of cholesterol termed low-density lipoprotein or LDL (also referred to as “bad” cholesterol) is removed from the blood by receptor-mediated endocytosis. In the human genetic disease familial hypercholesterolemia, the LDL receptors are defective or missing entirely. People with this condition have life-threatening levels of cholesterol in their blood, because their cells cannot clear LDL particles from their blood.

Although receptor-mediated endocytosis is designed to bring specific substances that are normally found in the extracellular fluid into the cell, other substances may gain entry into the cell at the same site. Flu viruses, diphtheria, and cholera toxin all have sites that cross-react with normal receptor-binding sites and gain entry into cells.

 

In Summary: Endocytosis

Cells perform three main types of endocytosis. Phagocytosis is the process by which cells ingest large particles, including other cells, by enclosing the particles in an extension of the cell membrane and budding off a new vesicle. During pinocytosis, cells take in molecules such as water from the extracellular fluid. Finally, receptor-mediated endocytosis is a targeted version of endocytosis where receptor proteins in the plasma membrane ensure only specific, targeted substances are brought into the cell.

Try It