Problem Set: Trigonometric Substitution

Simplify the following expressions by writing each one using a single trigonometric function.

1. [latex]4 - 4{\sin}^{2}\theta[/latex]

2. [latex]9{\sec}^{2}\theta -9[/latex]

3. [latex]{a}^{2}+{a}^{2}{\tan}^{2}\theta[/latex]

4. [latex]{a}^{2}+{a}^{2}{\text{sinh}}^{2}\theta[/latex]

5. [latex]16{\text{cosh}}^{2}\theta -16[/latex]

Use the technique of completing the square to express each trinomial as the square of a binomial.

6. [latex]4{x}^{2}-4x+1[/latex]

7. [latex]2{x}^{2}-8x+3[/latex]

8. [latex]\text{-}{x}^{2}-2x+4[/latex]

Integrate using the method of trigonometric substitution. Express the final answer in terms of the variable.

9. [latex]\displaystyle\int \frac{dx}{\sqrt{4-{x}^{2}}}[/latex]

10. [latex]\displaystyle\int \frac{dx}{\sqrt{{x}^{2}-{a}^{2}}}[/latex]

11. [latex]\displaystyle\int \sqrt{4-{x}^{2}}dx[/latex]

12. [latex]\displaystyle\int \frac{dx}{\sqrt{1+9{x}^{2}}}[/latex]

13. [latex]\displaystyle\int \frac{{x}^{2}dx}{\sqrt{1-{x}^{2}}}[/latex]

14. [latex]\displaystyle\int \frac{dx}{{x}^{2}\sqrt{1-{x}^{2}}}[/latex]

15. [latex]\displaystyle\int \frac{dx}{{\left(1+{x}^{2}\right)}^{2}}[/latex]

16. [latex]\displaystyle\int \sqrt{{x}^{2}+9}dx[/latex]

17. [latex]\displaystyle\int \frac{\sqrt{{x}^{2}-25}}{x}dx[/latex]

18. [latex]\displaystyle\int \frac{{\theta }^{3}d\theta }{\sqrt{9-{\theta }^{2}}}d\theta[/latex]

19. [latex]\displaystyle\int \frac{dx}{\sqrt{{x}^{6}-{x}^{2}}}[/latex]

20. [latex]\displaystyle\int \sqrt{{x}^{6}-{x}^{8}}dx[/latex]

21. [latex]\displaystyle\int \frac{dx}{{\left(1+{x}^{2}\right)}^{\frac{3}{2}}}[/latex]

22. [latex]\displaystyle\int \frac{dx}{{\left({x}^{2}-9\right)}^{\frac{3}{2}}}[/latex]

23. [latex]\displaystyle\int \frac{\sqrt{1+{x}^{2}}dx}{x}[/latex]

24. [latex]\displaystyle\int \frac{{x}^{2}dx}{\sqrt{{x}^{2}-1}}[/latex]

25. [latex]\displaystyle\int \frac{{x}^{2}dx}{{x}^{2}+4}[/latex]

26. [latex]\displaystyle\int \frac{dx}{{x}^{2}\sqrt{{x}^{2}+1}}[/latex]

27. [latex]\displaystyle\int \frac{{x}^{2}dx}{\sqrt{1+{x}^{2}}}[/latex]

28. [latex]{\displaystyle\int }_{-1}^{1}{\left(1-{x}^{2}\right)}^{\frac{3}{2}}dx[/latex]

In the following exercises, use the substitutions [latex]x=\text{sinh}\theta ,\text{cosh}\theta[/latex], or [latex]\text{tanh}\theta[/latex]. Express the final answers in terms of the variable x.

29. [latex]\displaystyle\int \frac{dx}{\sqrt{{x}^{2}-1}}[/latex]

30. [latex]\displaystyle\int \frac{dx}{x\sqrt{1-{x}^{2}}}[/latex]

31. [latex]\displaystyle\int \sqrt{{x}^{2}-1}dx[/latex]

32. [latex]\displaystyle\int \frac{\sqrt{{x}^{2}-1}}{{x}^{2}}dx[/latex]

33. [latex]\displaystyle\int \frac{dx}{1-{x}^{2}}[/latex]

34. [latex]\displaystyle\int \frac{\sqrt{1+{x}^{2}}}{{x}^{2}}dx[/latex]

Use the technique of completing the square to evaluate the following integrals.

35. [latex]\displaystyle\int \frac{1}{{x}^{2}-6x}dx[/latex]

36. [latex]\displaystyle\int \frac{1}{{x}^{2}+2x+1}dx[/latex]

37. [latex]\displaystyle\int \frac{1}{\sqrt{\text{-}{x}^{2}+2x+8}}dx[/latex]

38. [latex]\displaystyle\int \frac{1}{\sqrt{\text{-}{x}^{2}+10x}}dx[/latex]

39. [latex]\displaystyle\int \frac{1}{\sqrt{{x}^{2}+4x - 12}}dx[/latex]

40. Evaluate the integral without using calculus: [latex]{\displaystyle\int }_{-3}^{3}\sqrt{9-{x}^{2}}dx[/latex].

41. Find the area enclosed by the ellipse [latex]\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1[/latex].

42. Evaluate the integral [latex]\displaystyle\int \frac{dx}{\sqrt{1-{x}^{2}}}[/latex] using two different substitutions. First, let [latex]x=\cos\theta[/latex] and evaluate using trigonometric substitution. Second, let [latex]x=\sin\theta[/latex] and use trigonometric substitution. Are the answers the same?

43. Evaluate the integral [latex]\displaystyle\int \frac{dx}{x\sqrt{{x}^{2}-1}}[/latex] using the substitution [latex]x=\sec\theta[/latex]. Next, evaluate the same integral using the substitution [latex]x=\csc\theta[/latex]. Show that the results are equivalent.

44. Evaluate the integral [latex]\displaystyle\int \frac{x}{{x}^{2}+1}dx[/latex] using the form [latex]\displaystyle\int \frac{1}{u}du[/latex]. Next, evaluate the same integral using [latex]x=\tan\theta[/latex]. Are the results the same?

45. State the method of integration you would use to evaluate the integral [latex]\displaystyle\int x\sqrt{{x}^{2}+1}dx[/latex]. Why did you choose this method?

46. State the method of integration you would use to evaluate the integral [latex]\displaystyle\int {x}^{2}\sqrt{{x}^{2}-1}dx[/latex]. Why did you choose this method?

47. Evaluate [latex]{\displaystyle\int }_{-1}^{1}\frac{xdx}{{x}^{2}+1}[/latex]

48. Find the length of the arc of the curve over the specified interval: [latex]y=\text{ln}x,\left[1,5\right][/latex]. Round the answer to three decimal places.

49. Find the surface area of the solid generated by revolving the region bounded by the graphs of [latex]y={x}^{2},y=0,x=0,\text{and }x=\sqrt{2}[/latex] about the x-axis. (Round the answer to three decimal places).

50. The region bounded by the graph of [latex]f\left(x\right)=\frac{1}{1+{x}^{2}}[/latex] and the x-axis between [latex]x=0[/latex] and [latex]x=1[/latex] is revolved about the x-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for y as a function of x.

51. [latex]\left({x}^{2}+36\right)\frac{dy}{dx}=1,y\left(6\right)=0[/latex]

52. [latex]\left(64-{x}^{2}\right)\frac{dy}{dx}=1,y\left(0\right)=3[/latex]

53. Find the area bounded by [latex]y=\frac{2}{\sqrt{64 - 4{x}^{2}}},x=0,y=0,\text{and }x=2[/latex].

54. An oil storage tank can be described as the volume generated by revolving the area bounded by [latex]y=\frac{16}{\sqrt{64+{x}^{2}}},x=0,y=0,x=2[/latex] about the x-axis. Find the volume of the tank (in cubic meters).

55. During each cycle, the velocity v (in feet per second) of a robotic welding device is given by [latex]v=2t-\frac{14}{4+{t}^{2}}[/latex], where t is time in seconds. Find the expression for the displacement s (in feet) as a function of t if [latex]s=0[/latex] when [latex]t=0[/latex].

56. Find the length of the curve [latex]y=\sqrt{16-{x}^{2}}[/latex] between [latex]x=0[/latex] and [latex]x=2[/latex].