Use a table of integrals to evaluate the following integrals.
2. ∫x+3x2+2x+2dx
Show Solution
12ln|x2+2x+2|+2arctan(x+1)+C
Show Solution
cosh−1(x+33)+C
Show Solution
2x2−1ln2+C
Show Solution
arcsin(y2)+C
9. ∫sin3(2x)cos(2x)dx
10. ∫csc(2w)cot(2w)dw
Show Solution
−12csc(2w)+C
12. ∫103xdx√x2+8
13. ∫14−14sec2(πx)tan(πx)dx
14. ∫π20tan2(x2)dx
16. ∫tan5(3x)dx
Show Solution
112tan4(3x)−16tan2(3x)+13ln|sec(3x)|+C
17. ∫sin2ycos3ydy
Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.
18. [T] ∫dw1+sec(w2)
Show Solution
2cot(w2)−2csc(w2)+w+C
19. [T] ∫dw1−cos(7w)
20. [T] ∫t0dt4cost+3sint
Show Solution
15ln|2(5+4sint−3cost)4cost+3sint|
21. [T] ∫√x2−93xdx
22. [T] ∫dxx12+x13
Show Solution
6x16−3x13+2√x−6ln[1+x16]+C
24. [T] ∫x3sinxdx
Show Solution
-x3cosx+3x2sinx+6xcosx−6sinx+C
25. [T] ∫x√x4−9dx
26. [T] ∫x1+e-x2dx
Show Solution
12(x2+ln|1+e-x2|)+C
27. [T] ∫√3−5x2xdx
Show Solution
2arctan(√x−1)+C
29. [T] ∫excos−1(ex)dx
Use a calculator or CAS to evaluate the following integrals.
30. [T] ∫zπ40cos(2x)dx
Show Solution
0.5=12
31. [T] ∫10x⋅e-x2dx
32. [T] ∫802x√x2+36dx
33. [T] ∫2√3014+9x2dx
34. [T] ∫dxx2+4x+13
Show Solution
13arctan(13(x+2))+C
35. [T] ∫dx1+sinx
Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.
36. ∫dxx2+2x+10
Show Solution
13arctan(x+13)+C
38. ∫ex√e2x−4dx
Show Solution
ln(ex+√4+e2x)+C
39. ∫cosxsin2x+2sinxdx
40. ∫arctan(x3)x4dx
Show Solution
lnx−16ln(x6+1)−arctan(x3)3x3+C
41. ∫ln|x|arcsin(ln|x|)xdx
Use tables to perform the integration.
Show Solution
ln|x+√16+x2|+C
44. ∫dx1−cos(4x)
Show Solution
−14cot(2x)+C
46. Find the area bounded by y(4+25x2)=5,x=0,y=0,and x=4. Use a table of integrals or a CAS.
Show Solution
12arctan10
47. The region bounded between the curve y=1√1+cosx,0.3≤x≤1.1, and the x-axis is revolved about the x-axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)
48. Use substitution and a table of integrals to find the area of the surface generated by revolving the curve y=ex,0≤x≤3, about the x-axis. (Round the answer to two decimal places.)
49. [T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve y=x22,0≤x≤1, about the x-axis. (Round the answer to two decimal places.)
50. [T] Use a CAS or tables to find the area of the surface generated by revolving the curve y=cosx,0≤x≤π2, about the x-axis. (Round the answer to two decimal places.)
51. Find the length of the curve y=x24 over [0,8].
52. Find the length of the curve y=ex over [0,ln(2)].
Show Solution
√5−√2+ln|2+2√21+√5|
53. Find the area of the surface formed by revolving the graph of y=2√x over the interval [0,9] about the x-axis.
54. Find the average value of the function f(x)=1x2+1 over the interval [−3,3].
Show Solution
13arctan(3)≈0.416
55. Approximate the arc length of the curve y=tan(πx) over the interval [0,14]. (Round the answer to three decimal places.)
Candela Citations
CC licensed content, Shared previously