Problem Set: Other Strategies for Integration

Use a table of integrals to evaluate the following integrals.

1. 40x1+2xdx40x1+2xdx

2. x+3x2+2x+2dxx+3x2+2x+2dx

3. x31+2x2dxx31+2x2dx

4. 1x2+6xdx1x2+6xdx

5. xx+1dxxx+1dx

6. x2x2dxx2x2dx

7. 14x2+25dx14x2+25dx

8. dy4y2dy4y2

9. sin3(2x)cos(2x)dxsin3(2x)cos(2x)dx

10. csc(2w)cot(2w)dwcsc(2w)cot(2w)dw

11. 2ydy2ydy

12. 103xdxx2+8103xdxx2+8

13. 1414sec2(πx)tan(πx)dx1414sec2(πx)tan(πx)dx

14. π20tan2(x2)dxπ20tan2(x2)dx

15. cos3xdxcos3xdx

16. tan5(3x)dxtan5(3x)dx

17. sin2ycos3ydysin2ycos3ydy

Use a CAS to evaluate the following integrals. Tables can also be used to verify the answers.

18. [T] dw1+sec(w2)dw1+sec(w2)

19. [T] dw1cos(7w)dw1cos(7w)

20. [T] t0dt4cost+3sintt0dt4cost+3sint

21. [T] x293xdxx293xdx

22. [T] dxx12+x13dxx12+x13

23. [T] dxxx1dxxx1

24. [T] x3sinxdxx3sinxdx

25. [T] xx49dxxx49dx

26. [T] x1+e-x2dxx1+e-x2dx

27. [T] 35x2xdx35x2xdx

28. [T] dxxx1dxxx1

29. [T] excos1(ex)dxexcos1(ex)dx

Use a calculator or CAS to evaluate the following integrals.

30. [T] zπ40cos(2x)dxzπ40cos(2x)dx

31. [T] 10xe-x2dx10xe-x2dx

32. [T] 802xx2+36dx802xx2+36dx

33. [T] 23014+9x2dx23014+9x2dx

34. [T] dxx2+4x+13dxx2+4x+13

35. [T] dx1+sinxdx1+sinx

Use tables to evaluate the integrals. You may need to complete the square or change variables to put the integral into a form given in the table.

36. dxx2+2x+10dxx2+2x+10

37. dxx26xdxx26x

38. exe2x4dx

39. cosxsin2x+2sinxdx

40. arctan(x3)x4dx

41. ln|x|arcsin(ln|x|)xdx

Use tables to perform the integration.

42. dxx2+16

43. 3x2x+7dx

44. dx1cos(4x)

45. dx4x+1

46. Find the area bounded by y(4+25x2)=5,x=0,y=0,and x=4. Use a table of integrals or a CAS.

47. The region bounded between the curve y=11+cosx,0.3x1.1, and the x-axis is revolved about the x-axis to generate a solid. Use a table of integrals to find the volume of the solid generated. (Round the answer to two decimal places.)

48. Use substitution and a table of integrals to find the area of the surface generated by revolving the curve y=ex,0x3, about the x-axis. (Round the answer to two decimal places.)

49. [T] Use an integral table and a calculator to find the area of the surface generated by revolving the curve y=x22,0x1, about the x-axis. (Round the answer to two decimal places.)

50. [T] Use a CAS or tables to find the area of the surface generated by revolving the curve y=cosx,0xπ2, about the x-axis. (Round the answer to two decimal places.)

51. Find the length of the curve y=x24 over [0,8].

52. Find the length of the curve y=ex over [0,ln(2)].

53. Find the area of the surface formed by revolving the graph of y=2x over the interval [0,9] about the x-axis.

54. Find the average value of the function f(x)=1x2+1 over the interval [3,3].

55. Approximate the arc length of the curve y=tan(πx) over the interval [0,14]. (Round the answer to three decimal places.)