Problem Set: Trigonometric Substitution

Simplify the following expressions by writing each one using a single trigonometric function.

1. 44sin2θ44sin2θ

2. 9sec2θ99sec2θ9

3. a2+a2tan2θa2+a2tan2θ

4. a2+a2sinh2θa2+a2sinh2θ

5. 16cosh2θ1616cosh2θ16

Use the technique of completing the square to express each trinomial as the square of a binomial.

6. 4x24x+14x24x+1

7. 2x28x+32x28x+3

8. -x22x+4-x22x+4

Integrate using the method of trigonometric substitution. Express the final answer in terms of the variable.

9. dx4x2dx4x2

10. dxx2a2dxx2a2

11. 4x2dx4x2dx

12. dx1+9x2dx1+9x2

13. x2dx1x2x2dx1x2

14. dxx21x2dxx21x2

15. dx(1+x2)2dx(1+x2)2

16. x2+9dxx2+9dx

17. x225xdxx225xdx

18. θ3dθ9θ2dθθ3dθ9θ2dθ

19. dxx6x2dxx6x2

20. x6x8dxx6x8dx

21. dx(1+x2)32dx(1+x2)32

22. dx(x29)32dx(x29)32

23. 1+x2dxx

24. x2dxx21

25. x2dxx2+4

26. dxx2x2+1

27. x2dx1+x2

28. 11(1x2)32dx

In the following exercises, use the substitutions x=sinhθ,coshθ, or tanhθ. Express the final answers in terms of the variable x.

29. dxx21

30. dxx1x2

31. x21dx

32. x21x2dx

33. dx1x2

34. 1+x2x2dx

Use the technique of completing the square to evaluate the following integrals.

35. 1x26xdx

36. 1x2+2x+1dx

37. 1-x2+2x+8dx

38. 1-x2+10xdx

39. 1x2+4x12dx

40. Evaluate the integral without using calculus: 339x2dx.

41. Find the area enclosed by the ellipse x24+y29=1.

42. Evaluate the integral dx1x2 using two different substitutions. First, let x=cosθ and evaluate using trigonometric substitution. Second, let x=sinθ and use trigonometric substitution. Are the answers the same?

43. Evaluate the integral dxxx21 using the substitution x=secθ. Next, evaluate the same integral using the substitution x=cscθ. Show that the results are equivalent.

44. Evaluate the integral xx2+1dx using the form 1udu. Next, evaluate the same integral using x=tanθ. Are the results the same?

45. State the method of integration you would use to evaluate the integral xx2+1dx. Why did you choose this method?

46. State the method of integration you would use to evaluate the integral x2x21dx. Why did you choose this method?

47. Evaluate 11xdxx2+1

48. Find the length of the arc of the curve over the specified interval: y=lnx,[1,5]. Round the answer to three decimal places.

49. Find the surface area of the solid generated by revolving the region bounded by the graphs of y=x2,y=0,x=0,and x=2 about the x-axis. (Round the answer to three decimal places).

50. The region bounded by the graph of f(x)=11+x2 and the x-axis between x=0 and x=1 is revolved about the x-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for y as a function of x.

51. (x2+36)dydx=1,y(6)=0

52. (64x2)dydx=1,y(0)=3

53. Find the area bounded by y=2644x2,x=0,y=0,and x=2.

54. An oil storage tank can be described as the volume generated by revolving the area bounded by y=1664+x2,x=0,y=0,x=2 about the x-axis. Find the volume of the tank (in cubic meters).

55. During each cycle, the velocity v (in feet per second) of a robotic welding device is given by v=2t144+t2, where t is time in seconds. Find the expression for the displacement s (in feet) as a function of t if s=0 when t=0.

56. Find the length of the curve y=16x2 between x=0 and x=2.